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In lieu of Birthday Greetings

B. J. Birch Jean-Louis Colliot-Thélène
G. K. Sankaran Miles Reid Alexei Skorobogatov

This is a volume of papers in honour of Peter Swinnerton-Dyer’s 75th
birthday; we very much regret that it appears a few months late owing to
the usual kind of publication delays. This preface contains four sections of
reminiscences, attempting the impossible task of outlining Peter’s many-sided
contributions to human culture. Section 5 is the editor’s summary of the 12
papers making up the book, and the preface ends with a bibliographical
section of Peter’s papers to date.

1 Peter’s first sixty years in Mathematics

by Bryan Birch

Peter Swinnerton-Dyer wrote his first paper [1] as a young schoolboy just
60 years ago, under the abbreviated name P. S. Dyer; in it, he gave a new
parametric solution for x4 + y4 = z4 + t4. It is very appropriate that his first
paper was on the arithmetic of surfaces, the theme that recurs most often in
his mathematical work; indeed, for several years he was almost the only person
writing substantial papers on the subject; and he is still writing papers about
the arithmetic of surfaces sixty years later. Peter went straight from school
to Trinity College (National Service had not quite been introduced); after
his BA, he began research as an analyst, advised by J E Littlewood. At the
time, Littlewood’s lectures were fairly abstract, heading towards functional
analysis; in contrast, Peter was advised to work on the very combinatorial,
down-to-earth, theory of the van der Pol equation (the subject of Littlewood’s
wartime collaboration with Mary Cartwright), where a surprising sequence
of stable periodic orbits arise completely unexpectedly from a simple-looking
but non-linear ordinary differential equation. Lurking in the background was
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2 In lieu of Birthday Greetings

the three body problem, together with ambitions to prove the stability of the
solar system, compare [20].

After a couple of years, Peter was elected to a Trinity Junior Research
Fellowship, and became a full member of the mathematical community (he
never needed to submit a doctoral thesis). In 1954, he was selected for a
Commonwealth Fund Fellowship, and went to Chicago intending to work with
Zygmund; but when he reached Chicago, he met Weil, who converted him
to geometry; I believe that Weil was the person who most influenced Peter’s
mathematics. Ever since his year in Chicago, Peter has been an arithmetic
geometer, with unexpected expertise in classical analysis.

Peter returned to Cambridge in 1955. In the 1950s, mathematical life in
Cambridge was vigorous and sociable; everyone collaborated with everyone
else. It was the heyday of the Geometry of Numbers (it was sad that so much
excellent mathematical work was poured into such an unworthy subject!)
and Peter joined in. In particular, he and Eric Barnes (later Professor at
Adelaide) wrote a massive series of papers [5] on the inhomogeneous minima
of binary quadratic forms, which completely settled the problem of which
real quadratic fields are norm-Euclidean; like the van der Pol equation, this
is a case where a ‘discrete’ phenomenon arises from a ‘continuous’ question.
He went on to collaborate with Ian Cassels [8], trying to obtain a similar
theory for products of three linear forms; their work was highly interesting,
but only partially successful, and to this day there has been (I believe) no
further progress on the problem.

I first came into contact with Peter in 1953, when he read my Rouse Ball
essay on the Theory of Games (one of Peter’s lesser interests, that does not
show up in his list of publications), and I got to know him well after he re-
turned from Chicago. Over the next couple of years, we talked a lot and he
taught me to enjoy opera and we wrote two or three pretty but unimpor-
tant papers together; but at that stage, he wanted to be a geometer, and I
was turning towards analytic number theory, under the influence of Harold
Davenport. In my turn, I went to the States with a Commonwealth Fund
Fellowship, and while I was away Peter took a post in the fledgling Computer
laboratory. When I returned, I was excited by the Tamagawa numbers of
linear algebraic groups, one of us (probably Peter) wondered about algebraic
groups that aren’t affine, and we set to, computing elliptic curves.

Those four years, from 1958–62, were probably the best of my life; they
were the most productive, and I married Gina (who had a desk in Peter’s office
in the Computer laboratory). We were under no pressure to publish: we both
had Fellowships, and knew we could get another job whenever we needed one;
and we didn’t have to worry about anyone else anticipating our work. In the
first phase, we made a frontal assault; for the curves E(a, b) : y2 = x3+ax+b
with |a| ≤ 20 and |b| ≤ 30 we computed the Mordell–Weil rank, the 2-part of



Bryan Birch 3

the Tate–Shafarevich group, and a substitute T (E,P ) for a Tamagawa num-
ber τ(E), namely the product of p-adic densities taken over primes p ≤ P
where P was as high as the market would stand. Peter did the programming,
which he made feasible by dealing with many curves simultaneously; for good
primes the p-adic density was of course Np/p where Np was the number of
points mod p, and the crude methods of computing Np for medium-sized p
were nearly as fast for a batch of curves as for a single curve; there was an even
better batch-processing gain in the rank computations. (For the finitely many
‘bad’ primes one needed so-called fudge factors, which I seem to remember
were part of my job). To our delight, the numbers T (E,P ) increased roughly
as c(E) logr P , where r was the Mordell–Weil rank of E; so we prepared [17]
for publication, and proceeded to the second phase. Here, Davenport and
Cassels were very helpful; urged by their prodding, we realised that, rather
than considering the product T (E,P ) as P got large, one should be consider-
ing L(E, s)−1 as s tends to 1 (so that L(E, s) should have a zero of order r at
s = 1). (As Weil remarked to a colleague in Chicago, ‘it was time for them to
learn some mathematics’.) Hecke had tamed this Dirichlet series for elliptic
curves with complex multiplication, giving an explicit formula that actually
converged at s = 1. So we approximated to the Dirichlet series L(E, 1),
in case E had complex multiplication and Mordell–Weil rank 1; and we got
numbers that really seemed to mean something: after the junk factors had
been scraped off, they seemed to be the order of the Tate–Shafarevich group
divided by the torsion squared. Next, Davenport showed us how to evaluate
L(E, 1) explicitly in terms of the Weierstrass ℘-function; we computed some
more, and [18], containing the main B–S-D conjectures, was the result.

In 1962 I left Cambridge to take a job in Manchester, and our collaboration
became less close; we had expected to write further Notes in the series ‘On
Elliptic Curves’, but they didn’t happen. Note III might have been a plan of
Peter’s, to test the conjecture for abelian varieties by starting with products
of elliptic curves; this turned into the thesis of Damerell, which essentially
computed critical values of L(E(3), s), where E(3) is the cube of a curve;
the numbers were interesting but he was not able to interpret them. The
intended Note IV was more important; Nelson Stephens was able to compute
the higher derivatives L(r)(E, 1), where r is the Mordell–Weil rank; he was
the first to obtain exact evidence for the conjectured formula, for elliptic
curves of higher rank over the rationals, and indeed his thesis [93] is where
it is first precisely stated. In July 1965, Peter received a letter from Weil
[94] which set the tone for further progress in the area. Weil reminded us
that our conjectures make sense only if the relevant functions L(E, s) have
functional equations, and this is likely to be true only if the elliptic curve
E/Q is parametrised by modular functions invariant by some Γ0(N). So we
had better be looking at modular curves! I was in Cambridge on sabbatical
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for the next term, so we set to work. Indeed, we worked very hard; on one
occasion we were so engrossed talking mathematics after dinner, on Trinity
Backs, that an unobservant porter locked us out; fortunately, we were able to
regain entry by successfully charging the New Court gate.

Weil’s letter led to three developments; first, modular symbols: I am
pretty certain that Peter had the first idea [89], but he was very busy, so
I and my students had to make them work, and Manin [91] formalised the
concept. Next, the tabulation of elliptic curves of small conductor (Table I
of [43]); this involved many people, starting with Peter and then me, as
described in the introduction to the table. Finally, a few years later, Heegner
points came on the scene.

I was most excited in our work on elliptic curves; but indeed Peter’s in-
terests in this period were exceedingly diverse. He did seminal work on his
earliest love, the arithmetic of surfaces: in [15] he found the first counterex-
ample to the Hasse principle for cubic surfaces (I think he found this example
in 1959, as I reported on it in Boulder). A little later, he improved a result of
Mordell, that the Hasse principle is valid for the intersection of two quadric
hypersurfaces in Pn so long as the dimension n is large enough — this paper
[19] is of interest as a very early example of Peter’s technique of working out
what one can prove if one assumes various useful but unprovable ‘facts’; with
luck, one may remove such unwanted hypotheses later. His 1969 paper [34]
at the Stony Brook conference reviewed what was known, and contained new
material. At last, in 1970, Peter ceased to be a lone voice crying in the wilder-
ness, when Manin introduced the so-called Manin obstruction in his lecture
at Nice [90], and went on to write his book on cubic surfaces [92]. Also in
1969–70, Colliot-Thélène went to Cambridge to work with Peter; since then
the theory has flourished, as this volume amply testifies.

Meanwhile, Peter remained an analyst; in particular, Noel Lloyd was his
research student between 1969 and 1972. He also became interested in mod-
ular forms for their own sake; with Atkin, he investigated modular forms on
non-congruence subgroups [32]. Surprisingly, their results suggested that the
power series of such modular forms should have good p-adic properties (their
conjecture was proved long afterwards by Scholl). Peter corresponded with
Serre, and published the basic paper on the structure of (ordinary) modular
forms modulo p in the third volume of the Antwerp Proceedings [43]; this
volume was of course the beginning of the theory of p-adic modular forms.
Peter made yet another important contribution in the Computing Laboratory,
where he was responsible for implementing Autocode for Titan.

He worried about the inefficiencies of university governance, and took an
increasing interest in administrative matters. In 1973 he was elected Master
of St Catherine’s College, from 1979–81 he was Vice Chancellor, and from
1983–89 he was Chairman of the University Grants Committee. All this
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involved an immense amount of committee work, but miraculously (and with
the help of Harriet, and of Jean-Louis Colliot-Thélène) he remained in touch
with mathematics. When he returned to Cambridge in 1989 he resumed full-
time research, principally on the arithmetic theory of surfaces, but also on
analysis.

Oxford, 10th Dec 2002

2 Peter Swinnerton-Dyer’s work on the

arithmetic of higher dimensional varieties

by Jean-Louis Colliot-Thélène

In parallel to his well-known contributions to elliptic curves, modular forms,
L-functions, differential equations, bridge, chess and other respectable topics,
Peter has a lifelong interest in the arithmetic geometry of some – at first
sight – rather special varieties: cubic surfaces and hypersurfaces, complete
intersections of two quadrics defining a variety of dimension ≥ 2, and quartic
surfaces.

I happened to spend a year in Cambridge when I started research, and
Peter passed on to me his keen interest in the corresponding diophantine
questions. I am thus happy to report here on Peter’s past and ongoing work
on these problems. As will be clear from what follows, Peter, at age 75, is
still doing entirely original innovative research.

Much of the progress achieved in arithmetic geometry during the twenti-
eth century has been concerned with curves. For these, we now have a clear
picture: for genus zero, the Hasse principle holds; for genus one, many prob-
lems remain, but we have the Birch and Swinnerton-Dyer conjecture, and
we hope that the Tate–Shafarevich groups are finite; for genus at least two,
Faltings proved the Mordell conjecture.

In higher dimension the situation is much less clear. For the three types
of varieties mentioned above, one is still grappling with the basic diophantine
questions: How can we decide whether there are rational points on such a
variety? Is there a local-to-global principle, or at least some substitute for
such a principle? What are the density properties of rational points on such
varieties (in the sense of the Chinese remainder theorem)? Can one “parame-
trize” the rational points? Can one estimate the number of rational points of
bounded height?

The time when varieties were classified according to their degree, as in
Mordell’s book, is long gone, and one may view the varieties just mentioned
as belonging to some general classes of varieties. One general class of interest
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is that of rational varieties (varieties birational to projective space after a
finite extension of the ground field). A wider class, whose interest has been
recognized only in the last ten years, is that of rationally connected varieties.
These are now considered as the natural higher dimensional analogues of
curves of genus zero. Nonsingular intersections of two quadrics (of dimension
≥ 2) are rational varieties, hence rationally connected; so are nonsingular
cubic surfaces. Higher dimensional cubic hypersurfaces are rationally con-
nected. Nonsingular quartic surfaces are not rationally connected, but there
are interesting density questions for rational points on them.

Until 1965, there were two kinds of general results on the arithmetic of
rational varieties. One series of works, going back to the papers of H. Hasse
in the twenties (local-to-global principle for the existence of rational points
on quadrics), was concerned with homogeneous spaces of connected linear
algebraic groups. A very different series of works, going back to the work
of G. H. Hardy and J. E. Littlewood, proved very precise estimates on the
number of points of bounded height (hence in particular proved existence of
rational points) on complete intersections when the number of variables is
considerably larger than the multidegree.

There had also been isolated papers by F. Enriques, Th. A. Skolem, B.
Segre, L. J. Mordell, E. S. Selmer, F. Châtelet, J. W. S. Cassels and M. J.
T. Guy. Peter himself made various contributions to the topic in his early
work: he produced the first counterexamples to the Hasse principle and to
weak approximation for cubic surfaces [15], he extended results of Mordell on
the existence of rational points on complete intersections of two quadrics in
higher dimensional projective space [19], and he proved the Hasse principle
for cubic surfaces with special rationality properties of the lines.

Over the years 1965–1970, after some prodding by I. R. Shafarevich, Yu.
I. Manin and V. A. Iskovskikh looked at this field of research in the light
of Grothendieck’s algebraic geometry. They did not solve all the diophan-
tine problems, but they put some order on them. A typical illustration
was Manin’s appeal [90] to Grothendieck’s Brauer group to reinterpret most
known counterexamples to the Hasse principle, including Peter’s.

I spent the academic year 1969/1970 in Cambridge – I was hoping to
learn more about concrete diophantine problems, not the kind of arithmetic
geometry I was exposed to in France. Professor Cassels advised me to take
Peter as a research supervisor. I was first taken aback, because, ignorant as
I was, the only thing I knew about Peter was that he had written a paper
entitled “An application of computing to number theory”, and I was not
too keen on computing. I wanted concrete diophantine equations, but with
abstract theory. I nevertheless asked Peter, and this was certainly one of the
most important moves in my mathematical career.

In those days, Peter was neither a Sir nor a Professor. He was known
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to Trinity students as “The Dean”, whose function I understand was to pre-
serve moral order among the students. To this he contributed by serving
sherry (“Sweet, medium or dry?”) each evening in his small flat in New
Court. Sherry time was the ideal time to ask him for advice, mathemati-
cal or other – I do not remember Peter as a great addict of long sessions in
the Mathematics Department. Well, at least one could enjoy his beautifully
prepared lectures (the young Frenchman enjoyed the very clear, classical En-
glish as much as the mathematics). Peter was well known for his wit, and
Swinnerton-Dyer quotations and stories abounded. His students enjoyed his
avuncular behaviour – he was not a thesis adviser in the classical sense – and
at the same time one vaguely feared him as the possible mastermind of many
things going on in Cambridge. (His masterminding was later to extend to a
wider scene – I remember Spencer Bloch being rather impressed by a 1982
newspaper representation of Peter Swinnerton-Dyer portrayed as King Kong
climbing up one of London University’s main buildings.)

One day in April 1970, on Burrell’s walk, I asked Peter for a research
topic. He mentioned the question of understanding and generalizing some
work of François Châtelet, who had performed for cubic surfaces of the shape
y2 − az2 = f(x) (with f(x) a polynomial of the third degree) something
which looked like descent for elliptic curves – Peter also had handwritten lists
of questions on a similar process for diagonal cubic surfaces.

In July 1970 I went back to France, and learned “French algebraic geom-
etry” with J.-J. Sansuc. He and I discussed étale cohomology and Grothen-
dieck’s papers on the Brauer group, but I kept on thinking about Châtelet
surfaces and Peter’s questions. In 1976–77, Sansuc and I laid out the gen-
eral mechanism of descent, which appeals to principal homogeneous spaces
(so-called torsors) with structure group a torus (as opposed to the finite com-
mutative group schemes used in the study of curves of genus one). One aim
was to find the right descent varieties on Châtelet surfaces (and to answer a
question of Peter, whether descent here was a one-shot process, as opposed
to what happens for elliptic curves). The theory was first applied to more
amenable varieties, namely to smooth compactification of tori. As far as
Châtelet surfaces are concerned, there were two advances: In 1978, Sansuc
and I realized that Schinzel’s hypothesis (a wild generalization of the twin
prime conjectures) – also considered much earlier by Bouniakowsky, Dick-
son, and Hardy and Littlewood – would imply statements of the type: the
Brauer–Manin obstruction is the only obstruction to the Hasse principle for
generalized Châtelet surfaces, namely for surfaces of the shape y2−az2 = f(x)
with f(x) a polynomial of arbitrary degree (over the rationals). The second
advance took place in 1979: following a rather devious route, D. Coray, J.-
J. Sansuc and I found a class of generalized Châtelet surfaces for which the
Brauer–Manin obstruction entirely accounts for the defect of the Hasse prin-
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ciple.

During the period 1970–1982, Peter was busy with any number of different
projects: the Antwerp tables on elliptic curves [45], understanding Ramanu-
jan congruences for coefficients of modular forms [43], [51], writing, jointly
with B. Mazur, an influential paper [37] on the arithmetic of Weil curves and
on p-adic L-functions, proving (jointly with M. Artin [46]) the Tate conjec-
ture for K3 surfaces with a pencil of curves of genus one (a function-theoretic
analogue of the finiteness of the Tate–Shafarevich group), and also writing
a number of papers on differential equations. He also wrote a note on the
number of lattice points on a convex curve [33], which was followed by papers
of other writers (W. M. Schmidt, E. Bombieri and J. Pila). The ideas in those
papers now play a rôle in the search for unconditional upper bounds for the
number of rational points of bounded height (work of D. R. Heath-Brown).

During that period, Peter also contributed papers on rational varieties:
he gave a proof of Enriques’ claim that del Pezzo surfaces of degree 5 always
have a rational point [42], he wrote a paper with B. Birch producing further
counterexamples to the Hasse principle [47] and he wrote a paper on R-
equivalence on cubic surfaces over finite fields and local fields [56]. This last
paper used techniques specific to cubic surfaces to prove results which have
just been generalized to all rationally connected varieties by J. Kollár and E.
Szabó, who use modern deformation techniques. That paper and a later one
[87] on a related topic exemplify how Peter is not deterred by inspection of a
very high number of special cases.

Indeed it is Peter’s general attitude that a combination of cleverness and
brute force is just as powerful as modern cohomological machineries. As the
development of many of his ideas has shown, cohomology often follows, and
sometimes helps. As we say in France, “l’intendance suit”.

Let me here include a parenthesis on Peter’s ideal working set-up. Sitting
at a conference and not listening to a lecture on a rather abstruse topic seems
to be an ideal situation for him to conceive and write mathematical papers.
The outcome, written without a slip of the pen, is then imposed upon the
lesser mortal who will definitely take much more time to digest the contents
than it took Peter to write them.

In 1982, I spent another six months in Cambridge. I did not see Peter
too often, as I was rather actively working on algebraic K-theory, not a field
which attracts his attention. However, shortly before I left Cambridge, in
June 1982, Peter invited me for lunch at high table in Trinity, and while
reminding me how to behave in this respectable environment, he inadvertently
mentioned that he could say something new on descent varieties attached to
Châtelet surfaces – the topic he had offered to me as a research topic 12 years
earlier. If my memory is correct, what he did was to sketch how to prove
the Hasse principle on the specific intersections of two quadrics appearing in
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the descent process on Châtelet surfaces, the method being a reduction by
clever hyperplane sections to some very special intersections of two quadrics
in 4-dimensional projective space. Sansuc and I quickly saw how the descent
mechanism we had developed in 1976–77 could combine with this new result.
This was to develop into a Comptes Rendus note of Sansuc, Swinnerton-Dyer
and myself [57] in 1984, then into a 170 page paper of the three of us in Crelle
three years later [61]. Among other results, we obtained a characterisation
of rational numbers that are sums of two squares and a fourth power, and
we proved that over a totally imaginary number field two quadratic forms
in at least 9 variables have a nontrivial common zero (this is the analogue
of Meyer’s result for one form in 5 variables). An outcome of the algebraic
geometry in our work was a negative answer (joint work of the three of us
with A. Beauville [59]) to a 1949 problem of Zariski: some varieties are stably
rational but not rational.

Around 1992, the idea to use Schinzel’s hypothesis to explore the valid-
ity of the Hasse principle (or of its Brauer–Manin substitute) was revived
independently by J-P. Serre and by Peter [67]. In that paper, conceived dur-
ing a lengthy coach trip in Anatolia, Peter simultaneously started developing
something he calls the Legendre obstruction. In many cases, this obstruc-
tion can be shown to be equivalent to the Brauer–Manin obstruction, but
Peter tells me there are cases where this yields information not reachable by
means of the Brauer–Manin obstruction. In 1988, P. Salberger had obtained
a remarkable result on zero-cycles on conic bundles over the projective line.
The paper involved a mixture of algebraic K-theory and approximation of
polynomials. Peter saw how to get rid of the K-theory and how to isolate
the essence of Salberger’s trick, which turned out to be an unconditional ana-
logue of Schinzel’s hypothesis. This was developed in papers of Peter, in a
paper with me [66] and in a paper with A. N. Skorobogatov and me [73]. The
motto here is: it is worth exploring results conditional on Schinzel’s hypothe-
sis for rational points, because if one succeeds, then one may hope to replace
Schinzel’s hypothesis by Salberger’s trick and prove unconditional results for
zero-cycles.

Up until about ten years ago, work in this area was concerned with the
total space of one-parameter families of varieties which were close to being
rational. In 1993 Peter invented a very intricate new method, which en-
ables one to attack pencils of curves of genus one. In its general form, the
method builds upon two well-known but very hard conjectures, already men-
tioned: Schinzel’s hypothesis and finiteness of Tate–Shafarevich groups of
elliptic curves. The original paper [69], in Peter’s own words, looks like a
series of lucky coincidences and “rather uninspiring” explicit computations
(not many of us have the good fortune to come across such series). It already
had striking applications to surfaces which are complete intersections of two
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quadrics.

It took several years for Skorobogatov and me to get rid of as many lucky
coincidences as possible (one instance being a brute force computation which
turned out to be Peter’s rediscovery of Tate’s duality theorem for abelian
varieties over local fields). The outcome was a long joint paper of the three
of us [74] in 1998. In that paper Peter’s original method is extended beyond
rational surfaces: the method can predict a substitute of the Hasse principle
and density results for rational points on some elliptic surfaces (surfaces with
a pencil of curves of genus one). This came as quite a surprise.

Since 1998, Peter has been developing subtle variants of the method, with
application to some of the simplest unsolved diophantine equations: systems
of two quadratic forms in as low as 5 variables [69], [74], [84], diagonal quar-
tics [80] (hence some K3 surfaces, whose geometry is known to be far more
complicated than that of rational surfaces); diagonal cubic surfaces and hyper-
surfaces over the rationals [85]. The first two applications assume Schinzel’s
hypothesis and finiteness of Tate–Shafarevich groups, but [85] (on diagonal
cubic surfaces) only assumes the latter finiteness: this theorem of Peter’s
on diagonal cubic surfaces, both by the result and by the subtlety of the
proof, is certainly the most spectacular one obtained in the area in the last
ten years. For instance, under the finiteness assumption on Tate–Shafarevich
groups, the local-to-global principle holds for diagonal cubic forms in at least
5 variables over the rationals.

In 1996, rather wild guesses were made on two different topics: For which
varieties do we expect potential density of rational points? For varieties
over the rationals with a Zariski-dense set of rational points, what should we
expect about the closure of the set of rational points in the set of real points
(question of B. Mazur)? Peter had the idea to call in bielliptic surfaces to
produce unexpected answers to the second question. Skorobogatov and I
elaborated, and applied the mechanism to get rid of preliminary guesses for
the first question. This led to a joint work between the three of us [70]. There
has been recent (conjectural) progress on an answer to the first question
(work of complex algebraic geometers). The same bielliptic surfaces were
later used by Skorobogatov (1999) to produce the first ever example of a
surface for which the Brauer–Manin obstruction is not the only obstruction
to the Hasse principle. This has led to further developments by D. Harari
and Skorobogatov (descent under noncommutative groups).

Peter also contributed two papers [65], [77] to a topic which has seen quite
some activity over the last ten years: the behaviour of the counting function
for points of bounded height on Fano varieties. He pointed out the way to
the correct guess for the constant in the standard conjecture (later important
work in this area was done by E. Peyre and others). The lower bound he
obtained (jointly with J. B. Slater [77]) for cubic surfaces is still one of the
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best results in this area.
The line of investigation Peter started in 1994 with the paper [69] is very

delicate, and while his 2001 paper on diagonal cubic surfaces [85] is quite
a feat, I am sure that Peter will produce much more in this exciting new
direction. I am confident that he will keep on being as generous with his
ideas as he has always been and that he will allow some of us to accompany
him along the way.

Orsay, the 13th of February, 2003

3 Peter Swinnerton-Dyer: Geometer and

politician

by G.K. Sankaran

Peter Swinnerton-Dyer’s interest in algebraic geometry derives arguably from
its relation to number theory, and from the formative period he spent with
André Weil in Chicago in the 1950s, but he has also made important contribu-
tions to geometry over algebraically closed fields. Probably his most notable
technical result of a purely geometric nature is the proof (described elsewhere
in this preface by Jean-Louis Colliot-Thélène) that stable rationality does not
imply rationality [59]. This was, probably, contrary to the expectations of the
majority of algebraic geometers at the time; though, as often happens, it is
hard with hindsight to imagine why anybody ever thought the opposite was
true. The result, published in French in a joint paper with Beauville, Sansuc
and Colliot-Thélène, uses a wide range of techniques from different parts of
algebraic geometry: torsors, linear systems with base points, Prym varieties
and singularities of the theta divisor. It arose, however, out of arithmetic
work with Sansuc and Colliot-Thélène. Many of Peter’s arithmetic results
have a geometric flavour, especially his work with Bombieri and with Artin;
and it is now appreciated among geometers that arithmetic information can
be made to yield geometrical or topological information (in addition to the
well-known consequences of the Weil Conjectures). Rational and abelian va-
rieties particularly feature in his work: these topics are represented in this
volume by the papers of Reid and Suzuki and of Sankaran respectively.

Within algebraic geometry, however, Peter’s chief influence has been as
teacher, expositor, supplier of encouragement and enthusiasm, and éminence
grise. He recognised, at a time when few in Britain were more than dimly
aware of it, the power of the French school of algebraic geometry of Weil,
Serre and Grothendieck. In the 1970s he encouraged his then student Miles
Reid to visit Paris and learn directly from Deligne. The flourishing state of
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British algebraic geometry at the present day owes much to this development,
and to Peter’s encouragement and direction of later students. His Cambridge
Part III courses have been a source of inspiration to many, and his book on
abelian varieties and his account of the basic facts of Hodge theory have been
of great service to even more.

Many of Peter’s multifarious activities are completely unrepresented in
this book. The purpose of the rest of this note is to allude to some of them. I
am not the best person to write such a note (that would be Peter Swinnerton-
Dyer): I have drawn on my memories of conversations with many people,
among them Carl Baron, Arnaud Beauville, Bryan Birch, Béla Bollobás, Jean-
Louis Colliot-Thélène, James Davenport, Nicholas Handy, Richard Pinch,
Colin Sparrow, Miles Reid, Pelham Wilson, Rachel Wroth and, above all,
Peter Swinnerton-Dyer.

Mathematically the most obvious of Peter’s other activities is his sub-
stantial contribution to the theory of differential equations, including a paper
with Dame Mary Cartwright published only in Russian [55]. He is still active
in differential equations. Readers of the present volume will have no diffi-
culty in finding more information about this part of Peter’s work. Slightly
further afield, Peter was a member of the computing group in Cambridge in
the 1960s, in the days of the Cambridge University computer TITAN. The
original operating system for this famous machine, known as the Temporary
Supervisor, was written by Peter single-handed, and it worked. He wrote
the computer language Autocode for the same machine, and most Cambridge
mathematicians of the 1960s had their first programming instruction in this
language. Who could ask for anything more?

Peter, then Dean of Trinity College, was elected Master of St Catharine’s
College in 1973 and remained there for ten years. Littlewood is said to
have greeted the news with Clemenceau’s remark on hearing that the pianist
Paderewski was to be Prime Minister of Poland: ‘Ah, quelle chute!’. But St
Catharine’s afforded Peter considerable scope, and by all the numerous ac-
counts I heard, as a later Fellow of St Catharine’s, he was highly successful.
The head of a Cambridge College (of Oxford I cannot speak) is commonly all
but invisible to the students, and in some cases even to the Fellows. Peter
was not: he has never been averse to the company of students and he was
even willing to do College teaching. As he could and would teach almost any
course in the Mathematical Tripos, the task of the Director of Studies (who
is responsible for arranging for the students to be taught) was occasionally
much simplified.

While at St Catharine’s he served as Vice Chancellor of the University.
This is now a full-time post held for a long period, but at the time the
Vice Chancellor was chosen from among the heads of the various colleges
and served for two years only. The role of the Chancellor (then, as now,
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the Duke of Edinburgh) is purely ceremonial, and the Vice Chancellor is in
effect at the head of the University. It is a job for a skilled diplomatist.
Cambridge University is a highly visible organisation, under constant and
occasionally hostile scrutiny by newspapers and television. Internal matters
can lead to very acrimonious public debate, and in extreme cases, which
are quite common, the Vice Chancellor is expected to reconcile the factions.
During Peter’s term of office there was one especially well-publicised dispute
about whether a tenured post should be awarded to a particular person. It
was clearly impossible to satisfy all parties, but Peter nevertheless managed
to bring the matter to a conclusion without offending anybody further. Who
could ask for anything more?

Peter left St Catharine’s to take up a post as Chairman of the Univer-
sity Grants Commission, a semi-independent Government body which was
charged with deciding how Government funding ought to be apportioned
among different universities. He had already written an influential, and in
some quarters unpopular, report on the structure of the University of Lon-
don, and was thus well known to be of a reforming cast of mind. He was also
widely assumed to be in general political sympathy with the government of
the time (otherwise, the reasoning ran, why did they appoint him?); but this
was far from the case. He was nevertheless able to use his position to defend
the reputation of the universities for financial responsibility, and in particular
to establish the principle that research is a core activity for any university and
therefore merits funding on its own account, independently of teaching. The
price to be paid was investigation by government of the research activities
of universities. Peter is thus often held responsible for, or credited with, the
Research Assessment Exercise, which attempts to grade British university
departments (not individuals) roughly according to the quality of research
that they produce, and then hopes that they will be funded accordingly. The
system is agreed to be imperfect, but it is easier to think of worse alternatives
than better ones.

Peter’s first involvement in politics dates from early in his tenure as Mas-
ter of St Catharine’s. The Member of Parliament for Cambridge resigned his
seat and a by-election had to be held. Among the candidates was a represen-
tative of the Science Fiction Loony Party, whose aim in standing was to have
some fun, and if possible to do better than the extreme right-wing candidate.
Candidates in British parliamentary elections are required to pay a deposit of
a few hundred pounds, returnable if they receive a certain proportion (then
one-eighth) of the votes cast. In this case there was no prospect of that, so
the deposit was, in effect, a fee: Peter, a wealthy man, paid it. He explained
that the candidate “deserved every possible support, short of actually voting
for him”. Later his own name was mentioned as a possible parliamentary
candidate, on behalf of the more serious but probably less entertaining Social
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Democratic Party formed by Roy Jenkins and other disaffected members of
the Labour Party in 1981. Nothing came of the plan, if it ever existed. The
SDP seems, understandably, to have been unable to believe that all Peter’s
activities were the work of one man, and on occasion sent him two copies of
the same letter, one for Swinnerton and one for Dyer.

Peter is a strong Chess player. Even when Vice Chancellor, he used to put
in occasional appearances at the Cambridge University Chess Club, playing
five-minute against undergraduates. The story is that when appointed to a
Trinity research fellowship, he was strongly advised to cut down the time he
spent on Chess; and that his interest in Bridge dates from this time. He was
to become a very strong Bridge player. He was a member of the team that
won the British Gold Cup in 1963, and he acted as non-playing captain of
the Great Britain Ladies’ Bridge team.

On leaving UGC (by then renamed UFC) Peter resumed work as a math-
ematician as if nothing had happened. He also continued his life of public
service, working on behalf of such diverse institutions as the World Bank and
the Isaac Newton Institute: he is still frequently to be found at the latter, at
least.

Peter’s work at UGC/UFC was recognised by the award of a knighthood
(a KBE, to be precise). The editors of this volume tell me that “how did
Swinnerton-Dyer get his title?” is a frequently asked question after seminars
in places such as Buenos Aires and Vladivostok: at the risk of spoiling the
fun, here is an explanation.

Peter is a baronet: he is also a knight. A baronet is entitled to call himself
“Sir”, and when he dies his eldest son, or some other male relative if he has
none, inherits the title. It is only a title: it does not give him a seat in the
House of Lords, and never has. Baronetcies were invented by King James I,
early in the seventeenth century, as a way of raising money: they were simply
sold. Later baronetcies were awarded for actual achievement, but the oldest
ones are purely mercenary affairs. Since no baronetcies have been created
for many years, all current baronets have inherited their titles rather than
earning or buying them. A knight is also entitled to call himself “Sir”, but
the title dies with him. Knighthoods, which are still awarded in quite large
numbers, are for specific personal achievements: they are given by the Queen
on the recommendation of the Prime Minister. By the time he was knighted,
Peter was already a baronet, so already entitled to call himself “Sir Peter”
(not “Sir Swinnerton-Dyer”). For this reason he is sometimes referred to as
(Sir)2 Peter, although strictly speaking “Sir” is idempotent: he is technically
Professor Sir Henry Peter Francis Swinnerton-Dyer, FRS, Bt., KBE.

Bath, 12th Feb 2003
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4 Peter Swinnerton-Dyer, man and legend

by Miles Reid

I was supervised by Peter as a second year Trinity undergraduate. From
then on, I was among the many Cambridge students who were occasionally
invited for sherry at 7:30 pm (before Hall at 8:00 pm). For me and many
other middle-class students of my generation, this provided an education into
hitherto unsuspected areas of culture, such as good quality sherry, opera, col-
lege politics, famous math visitors, the workings of the British upper classes,
etc. Peter is 16th Baronet Swinnerton-Dyer, and his family was an illustra-
tion that the feudal system was still alive and well, in Shropshire, at least in
1949: he had an elegant clock on the mantlepiece of his Trinity New Court
apartment, with an inscription

“Presented to Henry Peter Francis Swinnerton-Dyer Esq by the
tenants, cottagers and employees of the Westhope estate on the
occasion of his coming of age”.

Peter’s legendary status was already well established – as a sample of the
stories in circulation, when Galois theory was introduced as a Part II course
lectured by Cassels, Peter claimed that the whole course could be given in 4
hours, and made good his claim one evening between 10 pm and 2 am. An-
other story about bridge, that I heard from Peter himself: At a tournament,
Peter called over the referee, told him formally that he was not making an
error or oversight, then bid 8 clubs. Although this bid is impossible, he had
calculated that he would lose less going down in it than allowing his oppo-
nents to make their grand slam. He knew the fine wording of the rules of
bridge, and the match referee was forced to accept the impossible bid, since
it was not made by error or oversight; the rules were subsequently changed
to block this obscure loophole.

At that time Peter was Dean of Trinity; the position included disciplinary
control of students. Those caught walking on the grass in College would be
sent to Peter, and would in theory be fined in multiples of 6/8 (that is, 6
shillings and 8 pence, a third of a pound). In my case, for a particularly
unpleasant misdemeanour, my sentence was to wash Peter’s car.

Peter had an affinity with math students, and would drop in on friends
in the evening to see if there was a conversation going on; I can well be-
lieve that student company was more fun than that of the senior combination
room. He would often join in conversations, or dominate them – his predilec-
tion for that well-turned phrase certainly had a lasting effect on my literary
pretensions. (For example: Would he send his son to Eton? “Certainly, it
has advantages both in this life, and in the life that is to come.”) Or, he
would sometimes simply be comfortable among student friends and nod off
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to sleep (presumably this mainly happened after wine in the Combination
room following High Table dinner). On one occasion, we played the board
game Diplomacy from after dinner until breakfast the following morning –
with great cunning and skill, Peter unexpectedly murdered me treacherously
at about 6:00 am. Outside board games, Peter was extremely generous with
friends and colleagues – many of us were invited to accompany him on a trip
to the opera in London, or on a car trip to Norway, Paris or Italy, with ap-
propriate stops to appreciate the great cathedrals and the starred restaurants
of the Michelin guide.

As a PhD student I started to get more specific mathematical benefit from
Peter’s advice. He helped Jean-Louis Colliot-Thélène and me set up a seminar
to study Mumford’s little red book, and was always in a position to illustrate
our questions with some example from his own research experience, although
his background in Weil foundations meant that there was always the added
challenge of a language barrier. The subject of my thesis (the cohomology of
the intersection of two quadrics), given to me by Pierre Deligne, turned out
to be closely related to Peter’s work with Bombieri on the cubic 3-fold [22].
Peter was also in the thick of the action surrounding modular forms at the
time of the 1972 Antwerp conference [43]–[45].

From 1978, when I got married and left Cambridge for Warwick, my
contact with Peter became less frequent. A few years later, Peter married
the distinguished archeologist Harriet Crawford (reader at UCL and author
of 3 books in the current Amazon catalogue). Together with everyone else
in British academia, I was frequently aware, often through the media, of his
activities as Vice Chancellor of Cambridge, as Chairman of the University
Grants Committee, as the person who persuaded the conservative government
of Mrs Thatcher (“We shall not see her like again!”) to accept research as
the main criterion for judging the quality of universities, and in numerous
other capacities. As a member of the British Great and Good, he chaired
any number of committees or public enquiries, investigating anything from
parochial malpractice at British universities (see

http://www.freedomtocare.org/page37.htm),

to the disastrous storm of 16th October 1987 (this on behalf of the Secretary
of State, see Meteorological Magazine 117, 141–144). I met him, for example,
in Japan on a mission to investigate the state of university libraries.

At about the time Peter retired from the UGC, Warwick University had
the foresight to offer him the position of Honorary Professor. He has visited
us on many occasions in this capacity, both on Vice Chancellor’s business
and for mathematical visits, on each occasion giving us the full benefit of
his wit and wisdom (for example, his scathing comments on teaching assess-
ment in universities: “The Teaching Quality Assessment was an extremely
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tedious farce, bloody silly”). On several occasions he has given two mathe-
matical lectures on the same day, one in Diophantine geometry and another
in differential equations, before taking us all out to a very good dinner.

Peter is more active in research than ever at age 75, and in closer con-
tact with us at Warwick: he has repeated his lecture series “New methods
for Diophantine equations” (first given in Arizona in December 2002) as a
Warwick M.Sc. course, driving over each week and meeting us for lunch in a
Kenilworth pub, at which Peter takes two pints of cider to put him in good
voice for the afternoon lectures.

I close with some Swinnerton-Dyer quotes:

• To have a computer job rejected by the EDSAC 2 Priorities Committee,
“You had to be both stupid and arrogant – neither alone would do it.”

• On meeting Colin Sparrow in King’s Parade “I have been made Chair-
man of UGC. Waste of a knighthood!”

• “They aren’t true, of course, but one believes them at least as much as
one believes the Thirty-Nine Articles of the Church of England.”

• In Trinity College parlour with Alexei Skorobogatov (in connection with
the dogma of the Orthodox Church): “In order to become a clergyman
in the Church of England you need to believe only one thing – that it
is better to be wealthy than poor.”

Warwick, 21st Feb 2002

5 Editor’s preface to the volume

by Alexei Skorobogatov

The papers in this volume offer a representative slice of the delicately inter-
twined tissue of analytic, geometric and cohomological methods used to attack
the fundamental questions on rational solutions of Diophantine equations.
A unique feature of the study of rational points is the enormous variety of
methods that interact and contribute to our understanding of their behaviour:
to name but a few, the Hardy–Littlewood circle method, the geometry of the
underlying complex algebraic varieties, arithmetic and geometry over finite
and p-adic fields, harmonic analysis, Manin’s use of the Brauer–Grothendieck
group to define a systematic obstruction to the Hasse principle, the theory of
universal torsors of Colliot-Thélène–Sansuc, and the analysis of Shafarevich–
Tate groups. It is no exaggeration to say that pioneering work of Peter
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Swinnerton-Dyer was an early example of many of these techniques, and a
source of inspiration for others. The contents of this volume, that we now
describe, reflect this vast influence.

Analytic number theory

The paper by Enrico Bombieri and Paula B. Cohen “An elementary ap-
proach to effective diophantine approximation on Gm” concerns approxima-
tions of high order roots of algebraic numbers, with applications to Diophan-
tine approximation in a number field by a finitely generated multiplicative
subgroup. Such results can be obtained from the theory of linear forms in
logarithms, whereas Bombieri’s new approach is based on the Thue–Siegel–
Roth theorem. The main improvement comes from a new zero lemma that is
simpler than the lemma of Dyson employed up to now. The results sharpen
Liouville’s inequality for rth roots of an algebraic number a. More precisely,
the authors obtain a lower bound for the distance |a1/r − γ|, where γ is an
algebraic number, and | · | a non-Archimedean absolute value.

Roger Heath-Brown’s paper “Linear relations amongst sums of two
squares” is an inspiring example of what analytic methods can do for the study
of rational points. The main result of the paper is an asymptotic formula for
the number of integral points of prescribed height on a class of intersections
of two quadratic forms in six variables. This formula accounts for possible
failures of weak approximation. The result is a significant advance in the
state of knowledge on density of rational points, for existing methods (such
as the circle method) provide asymptotic formulas given by the product of
local densities. Heath-Brown determines the additional factor that reflects the
failure of weak approximation — a conclusion that was hitherto inaccessible.
Such a result should provide a stimulus to establish analogous conclusions for
a broader range of examples. The proof involves descent to an intersection
of quadratic forms, to which analytic methods can be applied. The analysis
here is delicate, and motivated by earlier work of Hooley and Daniel.

Diophantine equations

Andrew Bremner’s short note “A Diophantine system” finds infinitely
many nontrivial Q-rational points on the complete intersection surface given
by

xk
1 + x

k
2 + x

k
3 = yk

1 + yk
2 + yk

3 for k = 2, 3, 4.

Trivial solutions to this system, with the second triple a permutation of the
first, are of no interest, but only one nontrivial rational solution was previously
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known. The proof is the observation that the hyperplane section x1 + x2 +
y1 + y2 = 0 gives an elliptic curve of rank 1.

In “Valeurs d’un polynôme à une variable représentées par une norme”,
Jean-Louis Colliot-Thélène, David Harari and Alexei Skorobogatov
consider the Diophantine equation P (t) = NK/k(z), where P (t) is a polyno-
mial and NK/k(z) the norm form defined by a finite field extension K/k. The
paper builds on previous work by Heath-Brown and Skorobogatov, who com-
bined the circle method and descent to prove results on rational solutions of
this equation for P (t) a product of two linear factors and k = Q. It studies in
detail the Brauer group of a smooth and proper model of the variety given by
P (t) = NK/k(z), with k an arbitrary field, and calculates it explicitly under
some additional assumptions. On the other hand, when k = Q and P (t) is a
product of arbitrary powers of two linear factors, the Brauer–Manin obstruc-
tion is proved to be the only obstruction to the Hasse principle and to weak
approximation. This leads to some new cases of the Hasse principle.

The consensus among experts seems to be that the failure of the Hasse
principle for rational surfaces can be characterised in terms of the Brauer–
Manin obstruction (this is far from being settled; possibly the closely related
problem for zero-cycles of degree 1 has more chances of success). Recent work
of Skorobogatov shows that this fails for some bielliptic surfaces; the paper
of Laura Basile and Alexei Skorobogatov “On the Hasse principle for
bielliptic surfaces” explores this area, providing positive and negative results
as testing ground for a future overall conjecture.

In his contribution “On the obstructions to the Hasse principle”, Per
Salberger gives a new proof of the main theorem of the descent theory
of Colliot-Thélène and Sansuc. Surprisingly, this new approach avoids an
explicit computation of the Poitou–Tate pairing at the crucial point of the
proof, relying instead on standard functoriality properties of étale cohomol-
ogy. One of the results was obtained independently by Colliot-Thélène and
Swinnerton-Dyer, following Salberger’s innovative 1988 paper. It is inter-
esting to note that whereas Colliot-Thélène and Swinnerton-Dyer extended
Salberger’s original method, in the present paper Salberger uses for the first
time Colliot-Thélène and Sansuc’s universal torsors to prove results about
zero-cycles. This demonstrates in a striking way that universal torsors are
well adapted not only for rational points, but also for zero-cycles. This ap-
proach may eventually advance our understanding of the following question
of Colliot-Thélène: is the Brauer–Manin obstruction to the existence of a
zero-cycle of degree 1 the only obstruction, if we assume the existence of such
cycles everywhere locally?
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Shafarevich–Tate groups

Neil Dummigan, William Stein and Mark Watkins’ paper “Construct-
ing elements in Shafarevich–Tate groups of modular motives” gives a criterion
for the existence of nontrivial elements of certain Shafarevich–Tate groups.
Their methods build upon Cremona and Mazur’s notion of “visibility”, but
in the context of motives rather than abelian varieties. The motives con-
sidered are attached to modular forms on Γ0(N) of weight > 2. Examples
are found in which the Beilinson–Bloch conjectures imply the existence of
nontrivial elements of these Shafarevich–Tate groups. Modular symbols and
Tamagawa numbers are used to compute nontrivial conjectural lower bounds
for the orders of the Shafarevich–Tate groups of modular motives of low level
and weight ≤ 12.

Tom Fisher’s paper “A counterexample to a conjecture of Selmer” an-
swers the following question. Let K be a number field containing a primitive
cube root of unity, and E an elliptic curve over K having complex multiplica-
tion by

√−3. Is the kernel of this complex multiplication on the Shafarevich–
Tate group of E over K of square order? The answer is positive if E is defined
over a subfield k ⊂ K such that [K : k] = 2, K = k(

√−3), assuming that the
Shafarevich–Tate group of E over k is finite. Examples show that without
this assumption the answer can be negative. These results play an impor-
tant rôle in the new method for proving the Hasse principle for pencils of
curves of genus 1, first used by Heath-Brown and then artfully employed by
Swinnerton-Dyer in his recent paper on the Hasse principle for diagonal cubic
forms.

In “On Shafarevich–Tate groups of Fermat jacobians”, William Mc-
Callum and Pavlos Tzermias find all the points on the Fermat curve of
degree 19 with quadratic residue field; these turn out to be the points pre-
viously described by Gross and Rohrlich. The result about rational points
is an application of the following result about the Shafarevich–Tate groups.
For an odd prime p, let F be a quotient of the pth Fermat curve by µp, and
let J be the jacobian of F . Then J has complex multiplication by the ring
of integers of the cyclotomic field K = Q(ζp). The authors prove that in
certain cases there are nontrivial elements of order exactly (1 − ζp)

3 in the
Shafarevich–Tate group of J over K.

Zagier’s conjectures

In his paper “Kronecker double series and the dilogarithm”, Andrey Levin
gives an explicit expression for the value of a certain Kronecker double series
at a point of complex multiplication as a sum of dilogarithms whose arguments
are values of some modular unit of higher level. This result can be interpreted
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in the spirit of Zagier’s conjecture. The special value of the Kronecker double
series is equal to the value of the partial zeta function of an ideal class for
an order in an imaginary quadratic field. The values of the modular unit
mentioned above belong to the ray class field corresponding to this order.
This gives an explicit formula for the value of a partial zeta function at s = 2
as a combination of dilogarithms of algebraic numbers.

Complex algebraic geometry

In “Cascades of projections from log del Pezzo surfaces”, Miles Reid and
Kaori Suzuki weave a fantasy around the fascinating old algebraic geo-
metric construction (del Pezzo, 1890) of the blowup of P2 in d ≤ 8 general
points and its anticanonical embedding. Some natural families of del Pezzo
surfaces with quotient singularities are organized in ‘cascades’ of projections,
similar to the way that the classic nonsingular del Pezzo surfaces are ob-
tained by successive projections from the del Pezzo surface of degree 9 in
P9 (in other words, P2 in its anticanonical embedding). Apart from their
geometric beauty, these examples illustrate the technique of ‘unprojection’, a
good working substitute for an as yet missing structure theory of Gorenstein
rings of small codimension, and a possible tool to eventually construct one.
The authors also sketch a program for the study of singular Fano 3-folds of
index ≥ 2 according to their Hilbert series, modelled on the 2-dimensional
case.

Gregory Sankaran studies the bilevel structures on abelian surfaces first
introduced by Mukai. Given a (1, t)-polarized abelian surface A, a bilevel
structure on A consists of a (canonical) level structure on A and a (canoni-

cal) level structure on the dual variety Â, which also carries a natural (1, t)-
polarization. The corresponding moduli problem gives rise to a Siegel mod-
ular threefold Abil

t . Mukai proved the rationality of these moduli spaces for
t = 2, 3 and 5. He also related them to the symmetry groups of the Platonic
solids and to projective threefolds with many nodes. In “Abelian surfaces
with odd bilevel structure” Sankaran proves that Abil

t is of general type for
odd t ≥ 17. A result of Borisov says that Abil

t is of general type for all but
finitely many t. Borisov’s method, however, gives no explicit bound.
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progress, Vol. 1 (Zakopane-Kościelisko 1997), de Gruyter, Berlin (1999),
pp. 63–74

[79] Peter Swinnerton-Dyer, Rational points on some pencils of conics with
6 singular fibres, Ann. Fac. Sci. Toulouse Math. (6) 8 (1999) 331–341

[80] Peter Swinnerton-Dyer, Arithmetic of diagonal quartic surfaces. II, Proc.
London Math. Soc. (3) 80 (2000) 513–544, and Corrigenda, same J. 85
(2002) 564

[81] Peter Swinnerton-Dyer, A note on Liapunov’s method, Dyn. Stab. Syst.
15 (2000) 3–10

[82] H. P. F. Swinnerton-Dyer, A brief guide to algebraic number theory,
London Mathematical Society Student Texts, 50. Cambridge University
Press, Cambridge, 2001

[83] Peter Swinnerton-Dyer, Bounds for trajectories of the Lorenz equations:
an illustration of how to choose Liapunov functions, Phys. Lett. A 281
(2001) 161–167

[84] A. O. Bender and Peter Swinnerton-Dyer, Solubility of certain pencils
of curves of genus 1, and of the intersection of two quadrics in P4, Proc.
London Math. Soc. (3) 83 (2001) 299–329

[85] Peter Swinnerton-Dyer, The solubility of diagonal cubic surfaces, Ann.
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Birkhäuser, Basel (2001), pp. 357–404

[88] C. Sparrow and H. P. F. Swinnerton-Dyer, The Falkner–Skan equation.
II, Dynamics and the bifurcations of P - and Q-orbits, J. Differential
Equations 183 (2002) 1–55



30 In lieu of Birthday Greetings

Other references

[89] B. J. Birch, Elliptic curves over Q: A progress report, in Number Theory
(Stony Brook 1969), Proc. Sympos. Pure Math., Vol. XX, Amer. Math.
Soc., Providence, R.I. (1971), pp. 396–400

[90] Yu. I. Manin, Le groupe de Brauer–Grothendieck en géométrie diophanti-
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On the Hasse principle for bielliptic surfaces

Carmen Laura Basile and Alexei Skorobogatov

To Sir Peter Swinnerton-Dyer

From the geometer’s point of view, bielliptic surfaces can be described
as quotients of abelian surfaces by freely acting finite groups, that are not
abelian surfaces themselves. Together with abelian, K3 and Enriques surfaces
they exhaust the class of smooth and projective minimal surfaces of Kodaira
dimension 0. Because of their close relation to abelian surfaces, bielliptic
surfaces are particularly amenable to computation. At the same time they
display phenomena not encountered for rational, abelian or K3 surfaces, for
example, torsion in the Néron–Severi group, finite geometric Brauer group,
non-abelian fundamental group. This curious geometry is reflected in amusing
arithmetical properties of these surfaces over number fields.

The behaviour of rational points on bielliptic surfaces was first studied
by Colliot-Thélène, Swinnerton-Dyer and the second author [CSS] in relation
with Mazur’s conjectures on the connected components of the real closure of
Q-points. The second author then constructed a bielliptic surface over Q that
has points everywhere locally but not globally; moreover, this counterexample
to the Hasse principle cannot be explained by the Manin obstruction [S1] (see
also [S2], Ch. 8). D. Harari [H] showed that bielliptic surfaces give examples of
varieties with a Zariski dense set of rational points that do not satisfy weak
approximation; moreover this failure cannot be explained by the Brauer–
Manin obstruction.

A discrete invariant of a bielliptic surface is the order n of the canonical
class in the Picard group. The possible values of n are 2, 3, 4 and 6. The
surface contructed in [S1] has n = 2. Until now this was the only known
counterexample to the Hasse principle that cannot be explained by the Manin
obstruction. In this note we construct a similar example in the case n = 3.
The difference is that we now need to consider elliptic curves with complex
multiplication. The actual construction turns out to be somewhat simpler
than in [S1]. In contrast, for the bielliptic surfaces with n = 6 we prove
that the Manin obstruction to the Hasse principle is the only one (under the
assumption that the Tate–Shafarevich group of its Albanese variety is finite).
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1 Bielliptic surfaces

Let k be a field of char k = 0, and k be an algebraic closure of k. For a
k-variety X we write X = X ×k k.

Definition 1 A bielliptic surface X over k is a smooth projective surface
such that X is a minimal surface of Kodaira dimension 0, and is not a K3,
abelian or Enriques surface.

Bielliptic surfaces over k were classified by Bagnera and de Franchis (see
[B], VI.20). Their theorem says that any bielliptic surface over k can be
obtained as the quotient of the product of two elliptic curves E×F by a freely
acting finite abelian group. The geometric genus of any bielliptic surface is 0.
For a bielliptic surface X let n be the order of KX in PicX. It follows from
the Bagnera–de Franchis classification that n can be 2, 3, 4 or 6 (loc.cit.).

Proposition 1 Let X be a bielliptic surface over k. There exists an abelian
surface A, a principal homogeneous space Y of A, and a finite étale morphism
f : Y → X of degree n, that is a torsor under the group scheme µn.

Proof The natural map PicX → PicX is injective, hence nKX is a prin-
cipal divisor. We write nKX = (φ), where φ ∈ k(X)∗. Let Y be the nor-
malization of the covering of X given by tn = φ. Then the natural map
f : Y → X is unramified, and is a torsor under µn (cf. [CS], 2.3.1, 2.4.1).
This implies that KY = f∗KX = 0. By the classification of surfaces, Y is an
abelian surface. (It is not K3 as the only unramified quotients of K3 surfaces
are Enriques surfaces.) Let A be the Albanese variety of Y , defined over k
(see [L], II.3). Then A is the Albanese variety of Y . The choice of a base
point makes Y an abelian variety isomorphic to A, so that Y is naturally
a principal homogeneous space of A. Choose y0 ∈ Y (k), then we have an
isomorphism Y → A that sends y to y−y0. Then ρ(g) =

gy0 − y0 is a contin-
uous 1-cocycle of Gal(k/k) with coefficients in A(k). Let Aρ be the principal
homogeneous space of A defined by ρ; it corresponds to the twisted Galois
action (g, a) �→ ga + ρ(g), where a ∈ A(k) (see [S], III.1, or [S2], 2.1). Then
the above k-isomorphism Y → A descends to a k-isomorphism Y → Aρ. �

Note that the analogue of the proposition fails in higher dimension because
there are many more possibilities for Y .

2 Group action on principal homogeneous

spaces of abelian varieties

Let A be an abelian variety over k, and Z a principal homogeneous space of
A. Suppose that a k-group scheme Γ acts on Z. This gives rise to a Galois-
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equivariant action of the group Γ(k) on the set Z(k). The action of Γ on Z
naturally defines an action of Γ on A, the Albanese variety of Z. Then the
action of the group A(k) on the set Z(k) is both Galois and Γ-equivariant.
Let AΓ be the Γ-invariant group subscheme of A. Similarly, let ZΓ ⊂ Z be
the closed subscheme consisting of points fixed by Γ.

Proposition 2 Suppose that a k-group scheme Γ acts on Z in such a way
that ZΓ is a nonempty scheme (i.e., some k-point of Z is fixed by Γ(k)). Then
[Z] ∈ Im[H1(k,AΓ) → H1(k,A)].

Proof Take x ∈ Z(k), fixed by Γ(k). Then a 1-cocycle of Gal(k/k) sending
g ∈ Gal(k/k) to gx − x ∈ A(k) represents the class [Z] ∈ H1(k,A). For any
γ ∈ Γ(k) we have

γ(gx− x) = γ · gx− γ · x = g(g
−1

γ · x)− x = gx− x.
Therefore, gx− x ∈ AΓ(k). �

It is easy to see that ZΓ is a principal homogeneous space of AΓ. The A-
torsor Z is the push-forward of the AΓ-torsor ZΓ with respect to the natural
injection of group schemes AΓ → A. This gives an alternative proof of the
proposition.

Corollary 1 Let A1 = A/AΓ, and α : A → A1 the natural surjection. Then
[Z] ∈ H1(k,A)[α∗], where

H1(k,A)[α∗] = ker[α∗ : H1(k,A) → H1(k,A1)].

We now consider the case when Z = C is a curve of genus 1 equipped with
a faithful action of Γ that has a fixed point. Then A = E is the Jacobian of
C. We shall write Aut0(E) for the automorphism group of E as an elliptic
curve. Now Γ(k) ⊂ Aut0(E), hence Γ(k) is a cyclic group of order n, where
n can be 1, 2, 3, 4 or 6. A straightforward calculation shows that, excluding
the trivial case n = 1, we have one of the following possibilities:

n #EΓ(k)

6 1

4 2

3 3

2 4

By Corollary 1 the first line of this table shows that if a cyclic group scheme
of order 6 acts on a curve of genus 1, then this curve has a k-point. As a
consequence of this fact we obtain in the next section a simple description of
bielliptic surfaces with n = 6.
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3 A case when the Manin obstruction to the

Hasse principle is the only one

Proposition 3 Let X be a bielliptic surface over k such that the order of
KX in PicX is 6. There exist an elliptic curve E and a curve D of genus
1 such that the group scheme µ6 acts on E by automorphisms of an elliptic
curve (in particular, preserving the origin), and acts on D by translations, in
such a way that X = (E ×D)/µ6.

Proof The Bagnera–de Franchis classification ([B], VI.20) says that for any
bielliptic surface X with KX of order 6 in PicX there exist elliptic curves C1

and C2 over k such that:

(1) µ6 acts on C1 by automorphisms of an elliptic curve (in particular,
preserving the origin);

(2) the group scheme µ6 is a subgroup of C2;

(3) X = (C1 × C2)/µ6.

The free action of µ6 on C1 × C2 makes the finite étale map C1 × C2 → X
a torsor under µ6. Let us compare it with the torsor Y → X constructed in
Proposition 1.

Recall that the type of a Z-torsor under a group of multiplicative type S is
a certain functorial map Ŝ → PicZ, where Ŝ is the module of characters of S
(see [S2], Definition 2.3.2). A torsor under a group of multiplicative type over
an integral projective k-variety is uniquely determined up to isomorphism by
its type (this follows from the fundamental exact sequence of Colliot-Thélène
and Sansuc, see [CS], [S2], (2.22)). Therefore it is enough to compare the
respective types. There is an exact sequence

0 → Hom(µ6, k
∗
) = Z/6 → PicX → PicY ,

where the second arrow is the type of the torsor Y → X, and a similar
sequence for C1×C2 → X ([S2], (2.4) and Lemma 2.3.1). Since the canonical
class of an abelian surface is trivial, KX is in the image of Z/6 in PicX, and
hence it is a generator of that image. Thus the types of both torsors are the
same (up to sign). Hence the pair (Y , the action of µ6) can be identified with
the pair (C1 × C2, the action of µ6).

Let A be the Albanese variety of Y . This is an abelian surface defined
over k. Let s be the k-endomorphism of A given by s =

∑
σ∈µ6

σ. Let A1

(respectively A2) be the connected component of 0 in ker(s) (respectively in
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Aµ6). Note that s acts as 0 on J1 = Jac(C1) ⊂ A, and as multiplication by 6
on J2 = Jac(C2) ⊂ A. Therefore, A1 = J1, A2 = J2. Now the map

A1 × A2 → A, (x, y) �→ x+ y,

is an isomorphism, since over k it is the natural isomorphism J1 × J2 → A.
This proves that A is a product of two elliptic curves over k. Hence Y , which
is a principal homogeneous space of A, is a product of two curves of genus 1
over k: Y = E ×D, where C1 � E, C2 � D.

By the Bagnera–de Franchis theorem the group scheme µ6 acts on E with
a fixed point. By the remark preceding the statement of the proposition,
this point is unique, and hence is k-rational. Hence E is an elliptic curve
(isomorphic to A1). �

See the beginning of the next section (or, in more generality, [S2], 5.2) for
the definition of the Manin obstruction.

Corollary 2 Let k be a number field. The Manin obstruction is the only
obstruction to the Hasse principle on the bielliptic surfaces X over k such
that the order of KX in PicX is 6, and the Tate–Shafarevich group of the
Albanese variety of X is finite.

Proof By the previous proposition we have X = (E×D)/µ6. Consider the
curve D′ = D/µ6 of genus 1, and let p : X → D′ be the natural surjective
map. Let J ′ be the Jacobian of D′. It is known ([B], VI) that the Albanese
variety of any bielliptic surface has dimension 1. Using the universal property
of the Albanese variety (see [L], II.3) and the connectedness of the fibres of p
one easily checks that J ′ is the Albanese variety of X.

Let {Qv} be a collection of local points on X, for all places v of k, that
satisfies the Brauer–Manin conditions. Then {p(Qv)} satisfies the Brauer–
Manin conditions on D′. If X(J ′) is finite, then D′ has a k-point by a
theorem of Manin (see [S2], Theorem 6.2.3). Call this point Q. The inverse
image of Q in D defines a class ρ ∈ H1(k, µ6) = k

∗/k∗6. Consider the twisted
torsor Eρ ×Dρ → X. Now Dρ has a k-point over Q. But the action of µ6 on
E preserves the origin, hence the twisted curve Eρ has a k-point. Therefore,
we obtain a k-point on Eρ ×Dρ, and hence on X. �

Note that for the bielliptic surfaces of Corollary 2 the quotient of BrX by
the image of Br k is infinite, but in the proof we only used the Brauer–Manin
conditions given by the elements of the conjecturally finite group X(J ′).

Corollary 2 is a particular case of a more general situation. Let Γ be an
algebraic group acting on varieties V and W such that the action on W is
free. Suppose that V has a k-point fixed by Γ. If the Manin obstruction to the
Hasse principle is the only one on W/Γ, then the same is true for (V ×W )/Γ.
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4 Main construction and example

Now assume k = Q, and let AQ be the ring of adèles of Q. For a projective
variety X we have X(AQ) =

∏
vX(Qv), where v ranges over all places of Q

including the real place. Let X(AQ)
Br be the subset of X(AQ) consisting of

the families of local points {Pv} satisfying all the Brauer–Manin conditions.
These conditions, one for each A ∈ BrX, are

∑
all v

invv A(Pv) = 0,

where invv is the local invariant at the place v, which is a canonical map
BrQv → Q/Z provided by local class field theory. The Brauer–Manin condi-
tions are satisfied for any Q-point of X by the Hasse reciprocity law, so that
we have X(Q) ⊂ X(AQ)

Br. If the last set is empty, this is an obstruction to
the existence of a Q-point on X; it is called the Manin obstruction.

We now give a construction of bielliptic surfaces X for which X(AQ)
Br �=

∅, but X(Q) = ∅. Then X is a counterexample to the Hasse principle that is
not explained by the Manin obstruction.

Theorem 1 Let E be an elliptic curve over Q with a nontrivial action of the
group scheme µ3. Let α : E → E1 be the degree 3 isogeny with kernel Eµ3.
Let D be an elliptic curve with a group subscheme isomorphic to µ3. Assume
that:

(i) Gal(Q/Q) acts nontrivially on Eµ3;

(ii) #X(E)[α∗] = 3;

(iii) C is a principal homogeneous space of E representing a nontrivial ele-
ment of X(E)[α∗];

(iv) Sel(D,µ3) = 0, that is, for any principal homogeneous space of D ob-
tained from a nontrivial class in H1(Q, µ3) = Q∗/Q∗3, there exists a
place v where it has no Qv-point.

Then X = (C × D)/µ3 is a counterexample to the Hasse principal not ex-
plained by the Manin obstruction.

Let us give an example of curves C and D satisfying the conditions of the
theorem. Let ζ be a primitive cubic root of unity.

Let C be the plane cubic curve x3 + 11y3 + 43z3 = 0, where the root
of unity ζ acts by (x : y : z) �→ (x : y : ζz). The Jacobian E of C is the
plane curve x3 + y3 + 473z3 = 0, with the action of µ3 given by the same
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formula. One easily checks that Condition (i) is satisfied. Condition (ii) is
verified in Example 4.3 of [F2]. The elements of H1(Q, E)[α∗] are given by
the curves mx3 +m2y3 + 473z3 = 0 with m a cube-free integer. The curve
C corresponds to m = 11. It has been known for some time [Se] that C has
points everywhere locally but not globally. This gives Condition (iii). (See
also [Ba], VI.)

Let D be the elliptic curve u3+v3+w3 = 0, with (1 : −1 : 0) as the origin.
The group subscheme of D generated by (1 : −ζ : 0) is isomorphic to µ3. The
translation by this element is (u, v, w) �→ (u : ζv : ζ2w). The elements of the
Selmer group Sel(D,µ3) are represented by the principal homogeneous spaces
Da defined by u3 + av3 + a2u3 = 0, where a is a cube free integer. Let p be
a prime factor of a. Then Da has no Qp-point. Therefore, the only curve Da

with points everywhere locally is D itself, so that Sel(D,µ3) = 0, which is
our Condition (iv).

Remark On changing some of the conditions of the theorem one obtains
bielliptic surfaces for which the Manin obstruction to the Hasse principle is
the only one. We replace Condition (ii) by the condition X(E)[α∗] = 0, and
instead of Condition (iii) we require that C is any principal homogeneous
space of E whose class is in H1(Q, E)[α∗]. We drop Condition (i) and keep
Condition (iv). Then the Manin obstruction is the only obstruction to the
Hasse principle for the surfaces (C×D)/µ3. For the proof, consider the torsor
C × D → (C × D)/µ3 under µ3. Under our assumptions the class of twists
Cρ ×Dρ, ρ ∈ Q∗/Q∗3, satisfies the Hasse principle. By descent theory ([S2],
Corollary 6.1.3 (2)) this implies our statement.

5 Proof of the theorem

Consider the alternating Cassels pairing X(E)×X(E) → Q/Z. Its restric-
tion to X(E)[α∗] gives an alternating pairing

X(E)[α∗]× X(E)[α∗] → Q/Z. (1)

The kernel of the last pairing is the image of αt
∗ : X(E1) → X(E), where

αt : E1 → E is the dual isogeny. (This seems to be part of the folklore; see
[F1] for a proof.) Since X(E)[α∗] ∼= Z/3Z by Condition (ii), the pairing
(1) must be zero. Therefore, there exists a principal homogeneous space
C1 of E1 with points everywhere locally, that lifts C. This means that the
map αt

∗ : H
1(Q, E1) → H1(Q, E) sends [C1] to [C]. There is a finite étale

morphism C1 → C that represents C as the quotient of C1 by the action
of ker(αt). Let Y = C × D, Y1 = C1 × D. This gives rise to a finite étale
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morphism Y1 → Y which is the identity on D. Let f1 be the composition of
the finite étale maps Y1 → Y → X, and let π : Y1 → D be the projection
to the second factor. In this notation we have the following key property
analogous to ([S1], Theorem 1):

f ∗1 (BrX) ⊂ π∗(BrD). (2)

To prove this we note that for any smooth and projective surface X with
pg = 0, in particular, for a bielliptic surface, we have an isomorphism of Ga-
lois modules BrX = Hom(NS(X)tors,Q/Z) (see [G], II, Corollary 3.4, III,
(8.12)). As in the proof of Corollary 2 one shows that the Albanese va-
riety of X is D/µ3. The same argument as in ([S1], pp. 403–404) works
in our situation, and we obtain NS(X)tors = Eµ3 . Then (i) implies that

(BrX)Gal(Q/Q) = 0. Therefore, BrX = ker[BrX → BrX]. A well known
Leray spectral sequence shows that the quotient of this group by the image
of BrQ is naturally isomorphic to H1(Q,PicX) ([S2], (2.23); here we use
the fact that H3(Q,Q

∗
) = 0). The analysis of the morphism of Galois mod-

ules f∗1 : PicX → PicY 1 is carried out in the same way as in the proof of
Lemma 2 of [S1], where the multiplication by 2 on E has now to be replaced
by the isogeny α : E → E1. The result is that the image f ∗1 (H

1(Q,PicX))
in H1(Q,PicY 1) is contained in π∗(H1(Q,PicD)). Formula (2) now follows
from the functoriality of the Leray spectral sequence.

Let us construct an adelic point on X satisfying all the Brauer–Manin
conditions. Take a rational point R ∈ D(Q), and a collection {Pv} ∈ C1(AQ).
Then f1({(Pv, R)}) ∈ X(AQ)

Br, as follows from (2) and the Hasse reciprocity
law.

It remains to show that there are no Q-points on X. Indeed, rational
points on X come from twists of Y given by a ∈ H1(Q, µ3) = Q∗/Q∗3. Any
such twist of Y is the product Ca × Da, where Ca and Da are curves of
genus 1. Moreover, Da is a principal homogeneous space of D of the kind
described in Condition (iv) of the theorem. By that condition, if Da has
points everywhere locally, then a is trivial, so that Da = D. Thus there
are no Q-points on the nontrivial twists of Y . On the other hand, Y has
no Q-points since by Condition (iii) there are no Q-points on C. Therefore,
X(Q) = ∅. This completes the proof.

More details can be found in the thesis of the first author [Ba]. The
preparation of this paper was speeded up by John Voight’s notes of the con-
ference “Rational and Integral Points on Higher Dimensional Varieties” at
the American Institute of Mathematics in December, 2002. We thank him
for the notes, and the organizers for stimulating atmosphere. We are very
grateful to Tom Fisher for telling us about the curve x3 + 11y3 + 43z3 = 0.
We thank Ekaterina Amerik for useful discussions.
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An elementary approach to effective
diophantine approximation on Gm

Enrico Bombieri and Paula B. Cohen

To Sir Peter Swinnerton-Dyer, on his 75th birthday

1 Introduction

Effective results in the diophantine approximation of algebraic numbers are
difficult to obtain, and for a long time the only general method available was
Baker’s theory of linear forms in logarithms. An alternative, more algebraic,
method was later proposed in Bombieri [2] and Bombieri and Cohen [3]. This
new method is quite different from the classical approach through the theory
of linear forms in logarithms.

In this paper, we improve on results derived in [3]. These results con-
cern effective approximations to roots of high order of algebraic numbers and
their application to diophantine approximation in a number field by a finitely
generated multiplicative subgroup. We restrict our attention to the non-
archimedean case, although our results and methods should go over mutatis
mutandis to the archimedean setting.

We do not claim that our theorems are the best that are known in this
direction. Linear forms in two logarithms (which are easier to treat than the
general case) suffice to prove somewhat better results than our Theorem 5.1,
see Bugeaud [6] and Bugeaud and Laurent [7]; we give an explicit comparison
in §5, Remark 5.1.

Theorem 5.2, which is useful for general applications, follows from Theo-
rem 5.1 by means of a trick introduced for the first time in [2] and improved
in [3]. Thus any improved form of Theorem 5.1 carries automatically an
improvement of Theorem 5.2. Note however that Theorem 5.2, in the form
given here, is still far from what one can obtain directly from Baker’s theory
of logarithmic forms in many variables, as in Baker and Wüstholz [1] in the
archimedean case and Kunrui Yu [10, 11] in the p-adic case.

Notwithstanding the comparison with Baker’s theory, we feel that there
is some untapped potential here. For example, one treats with equal ease
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the archimedean and the p-adic case, while this is not so in Baker’s theory
because of the bad analytic behaviour of the p-adic exponential.

The auxiliary construction involves a universal family of two-variable poly-
nomials invariant under an action of roots of unity of a certain order. The
main new feature in the current paper is the use of an elementary Wronskian
argument, involving differentiation only in a single variable, to derive a zero
estimate which bypasses former appeals to a more sophisticated two-variable
Dyson’s Lemma. This was initially inspired by private communication be-
tween the first author and David Masser in 1984. We reproduce part of that
communication in §6.

Although the method of the current paper is more elementary, the results
obtained are sharper than those of [3]. The main results are stated in §5,
Theorem 5.1 and Theorem 5.2. Theorem 5.1 represents an improvement over
the corresponding result of [3] both in the absolute constants and in the lower
bound for r in (H1), where (log 1

κ
)7 is replaced by (log 1

κ
)5, as well as in the

lower bound for h(α′) in (H2) of [3], which is no longer required. These
improvements automatically carry over to Theorem 5.2, which we restate for
convenience here in the Main Theorem. We follow the notations of [3], §2. In
particular H( ) denotes the absolute Weil height, h( ) = logH( ) the absolute
logarithmic Weil height and | |v is the absolute value associated to a place
v ∈ MK , normalized so that h(x) =

∑
v∈MK

max(0, log |x|v).
We define ρ(x) to be the solution ρ(x) > e5 of ρ/(log ρ)5 = x if x > e55−5,

and ρ(x) = e5 otherwise; for large x we have ρ(x) ∼ x(log x)5.

Main Theorem Let K be a number field of degree d and v a place of K
dividing a rational prime p. We denote by fv the residue class degree of the
extension Kv/Qp and set D∗

v = max(1, d
fv log p

). Define a modified logarithmic

height of x ∈ K by h′(x) = max
(
h(x), 1

D∗
v

)
, and let H ′(x) = exph′(x).

Let Γ be a finitely generated subgroup of the multiplicative group K∗, and
write ξ1, . . . , ξt for generators of Γ/tors. Let ξ ∈ Γ, A ∈ K∗ and κ > 0 be
such that

0 < |1 − Aξ|v < H ′(Aξ)−κ.

Define

C = 66pfv(D∗
v)6 and Q =

(
2tρ(C/κ)

)t t∏
i=1

h′(ξi).

Then we have

h′(Aξ) ≤ 16pfvρ(C/κ)Q max
(
h′(A), 4pfvQ

)
.



Enrico Bombieri and Paula B. Cohen 43

It is an interesting problem to try to refine the auxiliary construction
of §2 to the point where the nonvanishing of P (x, y) at the point (α, α′) is
immediate, that is P (α, α′) �= 0. In Cohen and van der Poorten [8] it is shown
that this would lead to a result comparable with the best known consequences
of Baker’s method.

Acknowledgements The second author thanks the Institute for Advanced
Study, Princeton, where much of this research was carried out with the sup-
port of The Ellentuck Fund. We also thank David Masser for permission to
include in the Appendix the text of his letter to the first author.

2 Equivariant polynomials

Let r ≥ 2 be a positive integer and l an integer with (l, r) = 1. For 0 ≤ j < r
we define ej to be the integer with 0 ≤ ej < r such that

lej ≡ −j (mod r).

Let 0 ≤ s < r and consider the polynomial

P (x, y) =
s∑

j=0

Aj(x
r)xejyj,

where the Aj(x) ∈ Q[x] are polynomials in x of degree at most n, not all
identically 0. This polynomial is invariant under the action (x, y) 
→ (εlx, εy)
of rth roots of unity, in the sense that

P (εlx, εy) = P (x, y) whenever εr = 1.

We define the index i(P ; ξ, η) of P (x, y) at a point (ξ, η) to be the order
of zero of P (x, η) at x = ξ, namely

i(P ; ξ, η) = ordξ P (x, η).

In what follows, for a real number t we abbreviate t+ = max(t, 0).

Lemma 2.1 We have∑
ξ∈C∗/{εr=1}

max
η

(
i(P ; ξ, η) − s

)+ ≤ (s + 1)n.
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Proof We use the classical Wronskian argument. Let I ⊂ {0, 1, . . . , s} be
the set of indices j such that Aj(x) is not identically 0 and t+1 its cardinality.
Clearly t ≤ s. We calculate the (t + 1) × (t + 1) Wronskian determinant

det

[
∂h+k

∂xh∂yk
P (x, y)

]
0≤h,k≤t

= det

[∑
j∈I

∂h

∂xh

(
Aj(x

r)xej

)
· ∂

k

∂yk
(
yj
)]

0≤h,k≤t

= det

[
∂h

∂xh

(
Aj(x

r)xej

)]
0≤h≤t, j∈I

· det

[
∂k

∂yk
(
yj
)]

j∈I, 0≤k≤t

.

Thus this Wronskian is a polynomial W (x)y∆, with

∆ =
∑
j∈I

j − t(t + 1)

2
.

Moreover, W (x) is not identically 0, because the polynomials Aj(x
r)xej are

linearly independent over Q and the monomials yj, j ∈ I, are also linearly
independent over Q (the Aj(x) for j ∈ I are not identically 0 by hypothesis
and the exponents in the monomials in Aj(x

r)xej belong to different arith-
metic progressions as j varies). By looking at the determinant of the matrix[
(d/dx)hAj(x

r)xej
]

we verify that

ord0 W (x) ≥
∑
j∈I

ej − t(t + 1)

2
and

ord∞W (x) ≤ r(t + 1)n +
∑
j∈I

ej − t(t + 1)

2
.

Now, if we specialize y to any η �= 0 (which does not affect the vanishing
of W (x)) and look at the first column of the Wronskian, we see that

ordξ W (x) ≥ (i(P ; ξ, η) − t
)+

;

therefore we have

ordξ W (x) ≥ max
η 	=0

(
i(P ; ξ, η) − t

)+

.

Since P (x, y) is invariant we have i(P ; εlξ, εη) = i(P ; ξ, η). Hence

r
∑

ξ∈C∗/{εr=1}
max

η

(
i(P ; ξ, η) − t

)+

=
∑
ξ∈C∗

max
η

(
i(P ; ξ, η) − t

)+

≤
∑
ξ∈C∗

ordξ W (x) = ord∞W (x) − ord0 W (x) ≤ r(t + 1)n,
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concluding the proof. �
Consider now the Q-vector spaces V0 ⊇ V1 ⊇ · · · ⊇ Vk ⊇ · · · defined by

V0 = {P : P =
s∑

j=0

Aj(x
r)xejyj},

Vk = {P : P ∈ V0 and i(P ; 1, 1) ≥ k}.

Lemma 2.2 The vector space Vk has dimension

dimVk = (s + 1)(n + 1) − k.

Proof We abbreviate ∂k for (∂/∂x)k.
It is clear that dimV0 = (s + 1)(n + 1). Also, we have dimVk/Vk+1 ≤ 1,

because

Vk+1 =
{
P ∈ Vk : (∂kP )(1, 1) = 0

}
.

Thus the lemma follows from the statement that

dimV(s+1)(n+1) = 0.

Suppose this is not the case. Then there is a polynomial P , not identically 0,
with i(P ; 1, 1) ≥ (s + 1)(n + 1). By Lemma 2.1 we get (s + 1)(n + 1) − s ≤
(s + 1)n, a contradiction. This completes the proof. �
Our next result gives us a small basis of the vector space Vk.

Lemma 2.3 There is a basis {Pl} of Vk such that

(s+1)(n+1)−k∑
l=1

h(Pl) ≤ 1

2
k2 log

(
r(n + 1)

4k

)
+

3

4
k2.

Proof Consider

P (x, 1) =
s∑

j=0

Aj(x
r)xej =

s∑
j=0

n∑
h=0

ajhx
rh+ej .

Then Vk can be identified with the subspace of {ajh} ∈ Q(s+1)(n+1) defined by
the linear equations

s∑
j=0

n∑
h=0

ajh

(
rh + ej

i

)
= 0, for i = 0, 1, . . . , k − 1,
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which has codimension k by Lemma 2.2. Let A be the associated matrix

A =

[(
rh + ej

i

)]
i=0,1,...,k−1
(j,h)∈{0,...,s}×{0,...,n}

.

By Lemma 2.2, A has maximal rank k, therefore it is a submatrix of maximal
rank of the matrix

B =

[(
l

i

)]
i=0,1,...,k−1
l=0,...,rn+r−1

.

It follows that H(A) ≤ H(B) where H( ) is the height. In our case, where
everything is over Z, the height of B is given by

H(B) =

√√√√∑ det

[(
nj

i

)]2

i=0,...,k−1
j=1,...,k

where the sum ranges over all k-tuples 0 ≤ n1 < n2 < · · · < nk < r(n + 1)
(note that the greatest common divisor of the determinants of all maximal
minors of B is 1).

We have

det

[(
nj

i

)]
i=0,...,k−1
j=1,...,k

=

∏
h<j(nj − nh)

1!2! · · · (k − 1)!
,

as one sees by transforming the determinant into det(ni
j/i!) and computing

the Vandermonde determinant det(ni
j). For the logarithmic height, this gives

h(B) =
1

2
log
( 1

1!2! · · · (k − 1)!

∑
0≤n1<···<nk<r(n+1)

∏
h<j

(nj − nh)2
)
.

An exact calculation based on the theory of orthogonal polynomials can
be found in Bombieri and Vaaler [5]. Writing for simplicity N = r(n+ 1), we
have

h(B) =
1

2

k−1∑
m=−k+1

(k − |m|) log

(
N + m

k + m

)
≤ N2u

(
k

N

)
,

where1

u(θ) =
1

4
θ2 log

1 − θ2

16θ2
+

1

2
θ log

1 + θ

1 − θ
+

1

4
log(1 − θ2)

=
1

2
θ2 log

1

4θ
+

3

4
θ2 −

∞∑
h=2

θ2h

4(h− 1)h(2h− 1)

≤ 1

2
θ2 log

1

4θ
+

3

4
θ2.

1The series expansion is given incorrectly in [5], p.57 with h2−2h+2 in place of (h−1)h.
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To conclude the proof of Lemma 2.3 we simply apply the main theorem in
Bombieri and Vaaler [4] which, in our case over the rational field Q, gives the
existence of a basis {Pl} for Vk such that

(s+1)(n+1)−k∑
l=0

h(Pl) ≤ h(A) ≤ h(B). �

Let a ∈ K and suppose that a is neither 0 nor a root of unity. We fix an
rth root α = a1/r and set α′ = γ−1α with γ ∈ K and γ �= 0.

Lemma 2.4 Let M ≥ 1. There is an invariant polynomial P ∈ Vk with
rational integral coefficients such that

M∑
m=−M
m	=0

(
i(P ;αlm, (α′)m) − s

)+ ≤ (s + 1)(n + 1) − k − 1

and

h(P ) ≤ 1

2

k2

(s + 1)(n + 1) − k

[
log

(
r(n + 1)

4k

)
+

3

2

]
.

Proof By Lemma 2.3, there is an invariant polynomial P (x, y) ∈ Vk with
rational integral coefficients such that

h(P ) ≤ 1

2

k2

(s + 1)(n + 1) − k

[
log

(
r(n + 1)

4k

)
+

3

2

]
.

Lemma 2.1 gives

M∑
m=−M

(
i(P ;αlm, (α′)m) − s

)+ ≤ (s + 1)n,

while on the other hand i(P ; 1, 1) ≥ k because P ∈ Vk. It follows that

M∑
m=−M
m	=0

(
i(P ;αlm, (α′)m) − s

)+ ≤ (s + 1)n− k + s,

completing the proof. �
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3 The Thue–Siegel method

In this section we prove

Lemma 3.1 Let v ∈ MK be a finite place for which

α ∈ Kv, |αl − 1|v < 1 and |α′ − 1|v < 1.

Let also k, s, n be positive integers such that s < k < (s + 1)(n + 1), s < r,
and Λ a positive real number such that

log
1

|1 − αl|v
≥ Λ and log

1

|1 − α′|v
≥ (k − s)Λ. (A1)

Define D = 1
2M

(
(s + 1)(n + 1) − k − 1

)
+ s + 1. Then we have

(k −D + 1)Λ ≤ M +
1

2

[
(n + 1)|l|h(a) + s h(γ)

]
+

1

2

k2

(s + 1)(n + 1) − k

[
log

(
r(n + 1)

4k

)
+

3

2

]

+ D

[
log

(
r(n + 1)

D

)
+ 1

]
.

Proof Fix m with −M ≤ m ≤ M , m �= 0. We write for simplicity (ξ, η) =
(αlm, (α′)m), im = i(P ; ξ, η).

Let P (x, y) =
∑

ahjx
rh+ejyj and Q(x, y) = xim(∂imP )(x, y). We have

Q(x, y) =
∑
hj

ahj

(
rh + ej
im

)
xrh+ejyj

whence, setting β = Q(ξ, η), we have

β =
∑
hj

ahj

(
rh + ej
im

)
alhm+[(lej+j)/r]mγ−mj ∈ K.

The fact that β ∈ K rather than an extension of K is essential for our next
argument.

By definition of im we have

(∂imP ) (ξ, η) �= 0,

therefore β �= 0 and the product formula in K yields∑
w∈MK

log |β|w = 0.
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Now we estimate each term log |β|w as follows.
We have

|lej + j| ≤ |l|(r − 1) + (r − 1) = (|l| + 1)(r − 1) < (|l| + 1)r,

and since the left-hand side of this inequality is divisible by r we find |lej+j| ≤
|l| r. This gives |lm|h+ [(lej + j)/r] |m| ≤ |lm|(n+ 1). Hence for every w �= v
we have

log |β|w ≤ |lm|(n + 1) log+ |a|w + |m|s log+ |1/γ|w
+ εw max

hj
log |ahj|w + εw log

∣∣∣∣
(
r(n + 1)

im + 1

)∣∣∣∣
w

where as usual εw = [Kw : Qw]/[K : Q] if w | ∞ and εw = 0 otherwise. In
the proof of the above estimate, we have used the obvious majorization

∑
hj

(
rh + ej
im

)
≤

rn+r−1∑
k=0

(
k

im

)
=

(
r(n + 1)

im + 1

)
.

If instead w = v, we note that since

α ∈ Kv, |αl − 1|v < 1 and |α′ − 1|v < 1,

we also have |ξ|v = 1, |η|v = 1 and

|ξ − 1|v ≤ |αl − 1|v < 1, |η − 1|v ≤ |α′ − 1|v < 1.

The Taylor series of Q(x, y) with center at (1, 1) has rational integral coeffi-
cients because Q(x, y) ∈ Z[x, y]. Moreover, by construction, the polynomial
Q(x, 1) = xim(∂imP )(x, 1) has a zero of order ≥ (k− im)+ at x = 1, therefore

|β|v = |ξim(∂imP )(ξ, η)|v
≤ max

(
|ξ − 1|(k−im)+

v , |η − 1|v
)

≤ max
(
|αl − 1|(k−im)+

v , |α′ − 1|v
)
.

If we combine these estimates with the product formula we find

min
(

(k − im)+ log
1

|αl − 1|v
, log

1

|α′ − 1|v
)

≤ |lm|(n + 1)h(a) + |m|s h(γ) + h(P ) + log

(
r(n + 1)

im + 1

)
.
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Using (x−y)+ ≥ (x−z)+−(y−z)+ and (A1), this implies the new inequality

(k − s)+Λ ≤ |lm|(n + 1)h(a) + |m|s h(γ)

+ h(P ) + log

(
r(n + 1)

(im − s)+ + s + 1

)
+ (im − s)+Λ.

We take the average of this inequality for −M ≤ m ≤ M , m �= 0. In view
of the easy estimate

log

(
p

q

)
≤ q log

p

q
+ q

we obtain

(k − s)+Λ ≤ M + 1

2
[(n + 1)|l|h(a) + s h(γ)] + h(P )

+
1

2M

M∑
m=−M
m	=0

(
(im − s)+ + s + 1

) [
log

(
r(n + 1)

(im − s)+ + s + 1

)
+ 1

]

+
1

2M

M∑
m=−M
m	=0

(im − s)+Λ.

In order to bound the right-hand side of this inequality we replace (im−s)+

by a positive continuous variable zm subject to
∑

zm ≤ (s+ 1)(n+ 1)− k− 1
and estimate the maximum using Lagrange multipliers. The maximum is
achieved if zm is constant, hence zm + s+ 1 = D with D as in the statement
of the lemma. Since (k − s)+ − (D − s− 1) ≥ k −D + 1, this completes the
proof of Lemma 3.1. �

4 Simplification of the main inequality

In order to apply Lemma 3.1 we make some further assumptions and intro-
duce new variables, with the aim of tidying up the inequality stated in the
conclusion of the lemma.

First, we remove the condition that k be a positive integer. To this end, it
suffices to note that the right-hand side of our inequality increases in k and D
for 4k ≤ r(n+ 1); thus we may drop the integrality condition on k, replacing
D by D′ =

(
(s + 1)(n + 1) − k

)
/(2M) + s + 1 throughout and k + 1 by k in

the left-hand side of the inequality. Note also that dropping the integrality
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condition on k makes condition (A1) even more stringent. This gives

(k −D′)Λ ≤ M +
1

2

[
|l|(n + 1)h(a) + s h(γ)

]
+

1

2

k2

(s + 1)(n + 1) − k

[
log

(
r(n + 1)

4k

)
+

3

2

]

+ D′
[
log

(
r(n + 1)

D′

)
+ 1

]
.

(4.1)

Next, we choose k = λ(s + 1)(n + 1). Then

D′ = (1 − λ)(s + 1)(n + 1)/(2M) + s + 1.

After dividing by (s + 1)(n + 1) the resulting inequality becomes(
λ− 1 − λ

2M
− 1

n + 1

)
Λ ≤ M + 1

2

[
|l| h(a)

s + 1
+

s

s + 1

h(γ)

n + 1

]

+
1

2

λ2

1 − λ

[
log

(
r

4λ(s + 1)

)
+

3

2

]

+
1

2M

[
log

(
2Mr

s + 1

)
+ 1

]
.

(4.2)

Now let

r > A ≥ h(a), G ≥ h(γ), r = ρA, s + 1 = σA ≤ r, n + 1 = νG, (A2)

and set

λ log ρ = Λ;

decreasing λ if needed, we also assume that

λ < 1, 0 < Λ ≤ 1. (A3)

If we suppose

G >
2M

νλ
, (A4)

which implies λ/(2M) ≥ 1/(n + 1), the above inequality simplifies to

(
λ− 1

2M

)
λ log ρ ≤ M + 1

2

( |l|
σ

+
1

ν

)

+
1

2

λ2

1 − λ

[
log
( ρ

4σλ

)
+

3

2

]
+

1

2M

[
log

(
2Mρ

σ

)
+ 1

]
. (4.3)
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This inequality is obtained under assumptions (A1), (A2), (A3), (A4) and
the further assumption, implicitly made along the way, that M , σA and νG
are integers. We choose2

M = �2λ−2�. (4.4)

With this choice, (4.3) can be replaced by(
λ− 1

4
λ2

)
λ log ρ ≤

(
1

λ2
+ 1

)( |l|
σ

+
1

ν

)

+
1

2

λ2

1 − λ

[
log
( ρ

4σλ

)
+

3

2

]
+
λ2

4

[
log

(
ρ

σ

2 + 2λ2

λ2

)
+ 1

]
. (4.5)

We now choose

ν =
1

G

⌈
Gσ

|l|
⌉
, σ = A−1

⌈
8|l|A
λ4 log ρ

⌉
; (4.6)

note that M , σA and νG are integers, hence our implicit assumption is veri-
fied. An easy majorization of the right-hand side of (4.5) shows that(

λ− 1

4
λ2

)
λ log ρ ≤

(
1

λ2
+ 1

)
1

4
λ4 log ρ +

λ2(3 − λ)

4(1 − λ)
log ρ

+
λ2

4(1 − λ)

[
log

(
1 + λ2

8σ3λ4

)
+ 4

]
. (4.7)

Since σ ≥ 8λ−4(log ρ)−1, we see that (4.7) implies(
λ− 1

4
λ2

)
λ log ρ ≤

(
1

λ2
+ 1

)
1

4
λ4 log ρ +

λ2(3 − λ)

4(1 − λ)
log ρ

+
λ2

4(1 − λ)

[
log
(
8−4(1 + λ2)λ8(log ρ)3

)
+ 4
]
. (4.8)

Since λ log ρ ≤ 1, inequality (4.8) yields(
λ− 1

4
λ2

)
λ log ρ ≤

(
1

λ2
+ 1

)
1

4
λ4 log ρ +

λ2(3 − λ)

4(1 − λ)
log ρ

+
λ2

4(1 − λ)

[
log(λ5 + λ7) − 4.317

]
. (4.9)

Note that log(λ5 + λ7) − 4.317 < log 2 − 4.317 < −3.623 < 0. Dividing both
sides of (4.9) by λ2 log ρ and using the lower bound 1/ log ρ ≥ λ gives

1 − 1

4
λ ≤ (1 + λ2)

1

4
+

3 − λ

4(1 − λ)
− 3.623

λ

4(1 − λ)

2 We use here the ceiling function �x� = minn∈Z{n : n ≥ x}.
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and after multiplication by 4(1 − λ) and an easy simplification we find

0 ≤ −0.623λ− λ3 < 0.

This is a contradiction, and shows that one of the hypotheses (A1) to
(A4), together with the choices (4.4) and (4.6), is untenable. Therefore, (A1)
does not hold if we assume (A2), (A3), (A4) and (4.4) and (4.6). Our choice
of parameters in (4.4) and (4.6) guarantees that (A2), (A3), (A4) are verified,
except possibly for the condition s + 1 ≤ r in (A2) that must be compatible
with our choice of σ in (4.6). Let us assume for the time being that this is
the case. Then if we assume the first half of (A1), namely log |1−αl|v ≤ −Λ,
we conclude that the second half of (A1) does not hold. Note also that by
(4.6) we have

σ ≥ 8|l|λ−4(log ρ)−1 and ν ≥ σ/|l| ≥ 8λ−4(log ρ)−1; (4.10)

therefore, 2�2λ−2�/(νλ) ≥ 1
2
λ log ρ and a fortiori (A4) can be replaced by

G ≥ λ log ρ.
If we recall that we had chosen k = λ(s + 1)(n + 1), we conclude that

Proposition 4.1 Let K, v, r, a, α = a1/r, γ be as before. Assume that
A, ρ, G, λ satisfy r > A ≥ h(a), ρ = r/A, G ≥ max(h(γ), λ log ρ) and
0 < λ < min(1, 1/ log ρ). Suppose further that

log
∣∣1 − αl

∣∣
v
≤ −λ log ρ.

Let

σ = A−1

⌈
8|l|A
λ4 log ρ

⌉
.

Then if σ ≤ ρ we have

log |1 − γ−1α|v > −λ2

⌈
Gσ

|l|
⌉ ⌈

8|l|A
λ4 log ρ

⌉
log ρ.

5 Applications to diophantine approximation

in a number field by a finitely generated

multiplicative group

As a corollary of Proposition 4.1, we derive in this section improvements of
Theorem 1 and Theorem 2 of [3]. As in that paper, we let K(v) be the residue



54 Effective diophantine approximation on Gm

field of Kv and fv, ev the residue class degree and ramification index of the
extension Kv/Qv. We abbreviate

d∗v =
d

fv log p
, D∗

v = max(1, d∗v).

We assume that |a|v = 1, so that if we choose l = pfv − 1, then |al − 1|v < 1.
From Lemma 1 of [3] we may suppose that

log
1

|1 − αl|v = log
1

|1 − al|v ≥ fv log p

d
=

1

d∗v
≥ 1

D∗
v

. (5.1)

Continuing with the notations of §4, we suppose that r > 2A and choose

λ = (D∗
v log ρ)−1 . (5.2)

Then we can apply Proposition 4.1 and deduce that

log |1 − γ−1α|v > −λ2

⌈
Gσ

|l|
⌉ ⌈

8|l|A
λ4 log ρ

⌉
log ρ (5.3)

provided that G ≥ max(h(γ), 1/D∗
v) and also σ ≤ ρ.

With the modified height h′(x) defined in the statement of the Main The-
orem, the condition on G becomes G ≥ h′(γ). Our choice for A will be
A = h′(a).

For the application we have in mind, r must be relatively large compared
to h′(a) if we want a nontrivial conclusion for our final result. Thus to begin
with we assume that

r > e4D∗
vh

′(a). (5.4)

In particular, log ρ ≥ 4.
The next step in simplifying (5.3) consists in removing the brackets in the

ceiling function. By (4.10), (5.4), A ≥ 1/D∗
v and our choice of λ we have⌈

8|l|A
λ4 log ρ

⌉
= Aσ ≥ 8|l|(D∗

v)3(log ρ)3 ≥ 512,

hence we may remove the brackets at the cost of multiplying by 1 + 1/512,
at most. In a similar way, we have⌈

Gσ

|l|
⌉
≥ 8G(D∗

v)3(log ρ)3 ≥ 512,

because G ≥ 1/D∗
v. Therefore, the cost of removing the brackets is at most

a factor of 1 + 1/512. Again, removing the brackets from σ will not cost us
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more than a further factor 1+1/512. Thus the total cost in this simplification
is at most a factor (1 + 1/512)3 < 1.006.

We can replace h′(γ) by h′(γ−1α), at a small cost. Indeed, h(γ) ≤
h(γ−1α) + h(α), hence using h′ ≥ 1/D∗

v we find

h′(γ) ≤ h′(γ−1α) +
h(a)

r
< h′(γ−1α) +

1

e4D∗
v

< (1 + e−4)h′(γ−1α). (5.5)

Thus the total cost of these simplifications is a factor of at most 1.006 ×
(1 + e−4) < 1.03. Therefore, after removing the brackets, taking into account
this small correction and making a further rounding off of constants, (5.3)
becomes the simpler

log |1 − γ−1α|v > −66pfv(D∗
v)6h′(a)

(
log

r

h′(a)

)5

h′(γ−1α). (5.6)

This inequality has been obtained under the assumption that s + 1 ≤ r. If
however s + 1 ≥ r + 1, we must have⌈

8|l|A
λ4 log ρ

⌉
= Aσ = s + 1 ≥ r + 1 = ρA + 1,

hence 8|l| ≥ λ4ρ log ρ. With our choice of λ and l, this means that if

ρ(log ρ)−3 ≥ 8pfv(D∗
v)4 (A5)

then the condition σ ≤ ρ in Proposition 1 is verified.
We now summarize our results as follows.

Theorem 5.1 Let K be a number field of degree d and v an absolute value
of K dividing a rational prime p. Let a ∈ K with a not 0 or a root of unity,
and suppose that a satisfies |a|v = 1.

Let r be a positive integer coprime to p. Then a has an rth root α ∈ Kv

satisfying 0 < |1 − αpfv−1|v < 1. Let α′ = αγ−1 with γ ∈ K, γ �= 0. Let
C = 66 pfv (D∗

v)6 and 0 < κ, and suppose that

r ≥ ρ

(
C

κ

)
h′(a). (H1)

Then

|α′ − 1|v ≥ H ′(α′)−rκ.

Moreover, if |a− 1|v < 1 then a has an rth root α ∈ Kv satisfying

0 < |α− 1|v < 1,

and (H1) can be further improved by replacing C with the smaller constant
C ′ = 66(D∗

v)6.
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Remark 5.1 Before completing the proof of Theorem 5.1, a comparison with
the explicit result in [6] is in order. To avoid undue complications, we only
consider asymptotic bounds as h(γ) → ∞ and r/h′(a) → ∞. Then, with the
optimal choice of κ, the bound given by our Theorem 5.1 is

log
1

|α′ − 1|v ≤ (
66 + o(1)

)
pfv (D∗

v)6h′(a)

(
log

r

h′(a)

)5

h(γ).

On the other hand, from [6] we may show that

log
1

|α′ − 1|v ≤ (
24 + o(1)

)
pfv (d∗v)

4h′(a)

(
log

r

h′(a)

)2

h(γ),

which is better than Theorem 5.1. Thus the interest of Theorem 5.1 is more
in the method of proof than in the result itself.

Proof By (5.6) it suffices that r be so big that

κr ≥ Ch′(a)

(
log

r

h′(a)

)5

,

that is ρ(log ρ)−5 ≥ C/κ. Note that, with our value for C, this condition
takes care of (A5) as soon as κ ≤ 8(D∗

v)2.
On the other hand, we have the Liouville lower bound

|α′ − 1|v ≥ (2H ′(α′))−r,

while H ′(α′)D
∗
v ≥ e > 2, hence in any case we have |α′ − 1|v ≥ H ′(α′)−2D∗

vr.
This shows that the conclusion of Theorem 5.1 is trivial as soon as κ > 2D∗

v.
Thus condition (A5) is of no consequence for the verification of Theorem 5.1,
completing the proof. �

In applications, condition (H1) is the most important. A direct compari-
son with Theorem 1 of [3] shows a big improvement in the absolute constant
of (H1) and a reduction in the power of the logarithmic term from 7 to 5.
The condition (H2) of [3] is now eliminated.

Theorem 5.2 Let K be a number field of degree d and v a place of K dividing
a rational prime p.

Let Γ be a finitely generated subgroup of K∗ and let ξ1, . . . , ξt be generators
of Γ/tors. Let ξ ∈ Γ, A ∈ K∗ and κ > 0 be such that

0 < |1 − Aξ|v < H ′(Aξ)−κ.
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Define

C = 66pfv(D∗
v)6 and Q =

(
2tρ(C/κ)

)t t∏
i=1

h′(ξi).

Then we have

h′(Aξ) ≤ 16pfvρ(C/κ)Q max
(
h′(A), 4pfvQ

)
.

Proof The main idea is to find r coprime to p, and a ∈ K not a root of
unity and γ ∈ Γ such that Aξ = aγ−r = (α′)r, without h(a) being too large
and with some control on the range of r. In [3], Lemma 6.2 uses a geometry
of numbers argument to show that if |1 − Aξ|v < H(Aξ)−κ we can do this
with

h′(a) ≤ h′(A) + rt

(
Q−1

t∏
i=1

h′(ξi)

)1/t

+
4

r
h(ξ) (5.7)

and r in a range3

N

2(pfv − 1)Q
− 1 ≤ r ≤ N + 3, (5.8)

for any Q ≥ (tD∗
v)t
∏
h′(ξi) and N ≥ 8pfvD∗

vh
′(A)Q. By (5.8), this lower

bound for N implies r ≥ 4.
Since r and p are coprime, we have |1 − Aξ|v = |1 − α′|v for some choice

of the rth root α; note also that Lemma 6.2 of [3] also guarantees that α is
not a root of unity.

In what follows, we abbreviate ρ for ρ(C/κ); note that we must have
κ < 2D∗

v (see the end of the proof of Theorem 5.1), hence ρ ≥ 33D∗
v.

Suppose now that

r ≥ ρh′(a). (5.9)

Then Theorem 5.1 yields

|1 − α′|v ≥ H ′(α′)−rκ.

This contradicts

|1 − α′|v = |1 − Aξ|v < H(Aξ)−κ = H(α′)−rκ

3 Lemma 6.2 in [3] has 2
√
2 in place of 2, but a more accurate evaluation of constants

appearing in Lemma 6.1 of [3] yields the cleaner bound stated here.
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unless H(α′) < H ′(α′), i.e. h(α′) < 1/D∗
v or equivalently

h(Aξ) < r/D∗
v. (5.10)

We have shown that (5.9) implies the bound (5.10) for h(Aξ). It remains
to localize r by choosing Q and N appropriately so as to satisfy the hypothesis
r ≥ ρh′(a) of Theorem 5.1.

We begin by choosing Q as

Q = (2ρt)t
t∏

i=1

h′(ξi), (5.11)

which we may because 2ρt > tD∗
v.

We need to bound h′(a) and for this we use (5.7). In view of (5.11), r ≥ 4
and h(ξ) ≤ h(Aξ) + h′(A), we have

h′(a) ≤ h′(A) +
1

2ρ
r +

4

r
h(ξ) ≤ 2h′(A) +

1

2ρ
r +

4

r
h(Aξ). (5.12)

Now we choose N to be

N =
⌈
2(pfv − 1)Q

(
1 + max

(
8ρh′(A),

√
16ρh(Aξ)

))⌉
.

Then (5.8) implies that

r ≥ max
(

8ρh′(A),
√

16ρh(Aξ)
)

hence (5.12) yields

h′(a) ≤ 1

4ρ
r +

1

2ρ
r +

1

4ρ
r =

1

ρ
r,

hence (5.9), and a fortiori (5.10), holds with this choice of N .
On the other hand, r ≤ N + 3 and finally from (5.10) we have

h(Aξ) ≤ (D∗
v)−1

⌈
2(pfv − 1)Q

(
1 + max

(
8ρh′(A),

√
16ρh(Aξ)

))⌉
+ 3.

The first alternative for the maximum easily yields

h(Aξ) ≤ 16pfvρh′(A)Q,

because ρh′(A)Q is fairly large (use ρ ≥ 33D∗
v to get ρh′(A)Q ≥ (66t)t),

hence the small corrections in going from 1 + max to max and in removing
the ceiling brackets and the constant 3 are easily absorbed in replacing pfv −1
by pfv .

The second alternative for the maximum yields

h(Aξ) ≤ 2pfvQ
√

16ρh(Aξ)

and finally

h(Aξ) ≤ 64p2fvρQ2,

completing the proof of Theorem 5.2. �
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6 Appendix: from a private communication

by David Masser

In this appendix, we reproduce material from a letter of David Masser to the
first author dated 8th January 1984. These ideas of Masser inspired our §2
and are reproduced here with his permission.

“ . . . My own method was based on zero estimates rather than heights,
using a ‘dividing out’ trick from transcendence. It gives the following general
result.

Theorem Suppose θ is algebraic of degree d ≥ 2 and of absolute height
H ≥ 1. Fix an integer e with

1 ≤ e < d

and real ε with

0 < ε <
1

e + 1
.

Put

δ =
d

e + 1
+ ε, α =

dδ

(e + 1)ε
,

β = dδ + α, γ = 1 − (e + 1)ε.

Suppose the integers p0, q0 ≥ 1 satisfy

Λ = (4H)−βq−δ
0

∣∣∣∣θ − p0

q0

∣∣∣∣
−γ

> 1.

Then the effective strict type of θ is at most

−eγ log |θ − p0

q0
|

log Λ
.

I didn’t try to improve the constant 4, although this could certainly be
done by using asymptotics for binomial coefficients.

The proof can be expressed in three lemmas, where c1, c2, . . . denote con-
stants depending only on d, H, ε. For P (x, y) in C[x, y] write as in Siegel’s
set-up

Pl(x, y) =
1

l!

(
∂

∂x

)l

P (x, y).
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Lemma 1 For each k ≥ 1 there exists a nonzero polynomial P (x, y) in
Z[x, y], of degree at most δk in x and at most e in y, with coefficients of
absolute value at most c1(4H)αk, such that

Pl(θ, θ) = 0, (0 ≤ l < k).

Furthermore P (x, y) is not divisible by any nonconstant element of C[y].

Without the last sentence this is routine (I myself like to use the version
of Siegel’s Lemma proved as the Proposition (p. 32) of the enclosed offprint4).
Then one simply divides P (x, y) by its greatest monic factor in C[y]. It is
not hard to see that the resulting quotient also satisfies the conditions of the
lemma.

Lemma 2 Suppose k ≥ e, and let ξ, η be arbitrary numbers with ξ not a
conjugate of θ. Then there exists l with

0 ≤ l ≤ (e + 1)εk + ed

such that

Pl(ξ, η) �= 0.

Again the proof is essentially routine, on taking a minimal representation

P (x, y) = A0(x)B0(y) + · · · + Af (x)Bf (y).

The point is that

B0(η) = · · · = Bf (η) = 0

is impossible by the last sentence of Lemma 1. This is the step usually done
by Gauss’s Lemma. It is interesting that the Dyson Lemma appears to give
only

√
2eδ − d in place of (e + 1)ε multiplying k.

Lemma 3 Suppose k ≥ ed/γ and let p0, q0, p, q be integers with q0 ≥ 1, q ≥ 1.
Then we have

q−δk
0 q−e ≤ c2(4H)βk

(∣∣∣∣θ − p0

q0

∣∣∣∣
γk−ed

+

∣∣∣∣θ − p

q

∣∣∣∣
)
.

4 M. Anderson, D. W. Masser, Lower bounds for heights on elliptic curves, Math. Z.
174 (1980) 23–34
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This follows from a straightforward comparison of estimates for Pl(
p0

q0
, p
q
)

with l chosen as in Lemma 2.
The Theorem now follows by taking k asymptotic to e log q/ log Λ. The

usual ineffective arguments give any exponent

λ >
d

e + 1
+ e

as in Siegel. The optimal choice e = 10, ε =
√

2−1
11

gives any exponent

λ >
55

14

(
4 +

√
2
)

= 21.270 . . .

for the real root θ(m, d) of xd − mxd−1 + 1 = 0 provided d ≥ d0(λ) and
m ≥ m0(d).

I briefly looked at a similar approach in the Gelfond–Dyson set-up, with
a fixed integer t and derivatives (∂/∂x)l(∂/∂y)sP (x, y) for

l

k
+
s

t
< 1

But even if the analogous zero estimate could be made to work, it seems as if
t = 1 (i.e. Siegel) gives the best results for θ(m, d). So I didn’t try too hard
with this.”
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A Diophantine system

Andrew Bremner

Dedicated to Peter Swinnerton-Dyer on
the occasion of his seventy-fifth birthday

This note concerns the Diophantine system

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3

x3
1 + x3

2 + x3
3 = y3

1 + y3
2 + y3

3 (1)

x4
1 + x4

2 + x4
3 = y4

1 + y4
2 + y4

3

which represents a surface of degree 24. The system is of interest in that
Palamà [7] in 1951 showed that the only real points on (1) in the positive
quadrant (xi > 0, yi > 0 for i = 1, 2, 3) are trivial points, that is, points
where (x1, x2, x3) is a permutation of (y1, y2, y3). Geometrically, the only real
points on (1) in the positive quadrant lie upon a finite number of planes.
Choudhry [2] discovers the nontrivial rational point (which we also refer to
as a nontrivial solution)

(x1, x2, x3; y1, y2, y3) = (358,−815, 1224;−776, 1233,−410),

and we observe that this point also satisfies x1 + x2 + y1 + y2 = 0. In this
note, we investigate the section of the surface (1) cut by the plane

x1 + x2 = t(y1 + y2) (2)

for t = ±1. There are only finitely many nontrivial points on the section with
t = 1, but infinitely many nontrivial points on the section with t = −1.

First, make the substitution

x1 = a1m + b1n, y1 = a1m − b1n

x2 = a2m + b2n, y2 = a2m − b2n (3)

x3 = a3m + b3n, y3 = a3m − b3n

where mn �= 0, so that (2) above becomes

m(t − 1)(a1 + a2) = n(t + 1)(b1 + b2).

63
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Case I: t = 1

Then b2 = −b1, and substituting (3) into (1) gives:

a1b1 − a2b1 + a3b3 = 0

3(a2
1b1 − a2

2b1 + a2
3b3)m

2 + b3
3n

2 = 0 (4)

(a3
1b1 − a3

2b1 + a3
3b3)m

2 + (a1b
3
1 − a2b

3
1 + a3b

3
3)n

2 = 0.

Nontrivial solutions demand a1 �= a2, a3 �= 0. Eliminating m, n in (4) and
using b3 = (−a1 + a2)b1/a3 gives

a4
1 − a3

1a2 − a1a
3
2 + a4

2 − 3a3
1a3 + 3a2

1a2a3 + 3a1a
2
2a3

− 3a3
2a3 + 2a2

1a
2
3 − 4a1a2a

2
3 + 2a2

2a
2
3 + 3a1a

3
3 + 3a2a

3
3 − 3a4

3 = 0.

This quartic curve is singular at the point (a1, a2, a3) = (1, 1, 0), and has
genus 2. Put

a1 = u, a2 = u − v, a3 = w

to give

3u2v2 − 3(v3 + 2v2w − 2w3)u + (v2 − w2)(v2 + 3vw + 3w2) = 0. (5)

The discriminant (as function of u) being square implies

−3(v6 − 4v4w2 + 12v2w4 − 12w6) = square. (6)

This latter curve of genus 2 has of course only finitely many rational points.
Its Jacobian is isogenous to the product of the two elliptic curves

E1 : −3(V 3 − 4V 2 + 12V − 12) = S2
1 ,

E2 : −3(1 − 4W + 12W 2 − 12W 3) = S2
2 ,

both of which are of rank 1 (with generators (0, 6) and (1, 3) respectively).
Accordingly, Chabauty’s method (see for example Coleman [3]) for determin-
ing the rational points on (6) does not apply. It is possible that methods
of Flynn and Wetherell [6] may be effective, but we have not pursued the
calculation; see also Bruin and Elkies [1]. In any event, there are only finitely
many solutions of the system (1) satisfying x1 +x2 = y1 +y2, and their deter-
mination is afforded by finding all rational points on the curve (6). A modest
computer search finds only the points (u, v, w) = (1, 0, 0), (1, 0, 2), (0, 1, 1),
(1, 1, 1) on (5), corresponding to trivial solutions of (1).
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Case II: t = −1

Now a1 + a2 = 0, and

a1b1 − a1b2 + a3b3 = 0,

3(a2
1b1 + a2

1b2 + a2
3b3)m

2 + (b3
1 + b3

2 + b3
3)n

2 = 0, (7)

(a3
1b1 − a3

1b2 + a3
3b3)m

2 + (a1b
3
1 − a1b

3
2 + a3b

3
3)n

2 = 0.

Nontrivial solutions demand b1 �= b2, a3 �= 0. Eliminating m, n at (7) and
using b3 = (−b1 + b2)a1/a3 gives

a1(b1 − b2)(a1b1 − a3b1 − a1b2 − a3b2)P (a1, a3, b1, b2) = 0,

where

P (a1, a3, b1, b2) = a4
1b

2
1 − 2a3

1a3b
2
1 + 2a1a

3
3b

2
1 − a4

3b
2
1 − 2a4

1b1b2

− 8a2
1a

2
3b1b2 + a4

3b1b2 + a4
1b

2
2 + 2a3

1a3b
2
2 − 2a1a

3
3b

2
2 − a4

3b
2
2.

Consequently, either a1 = 0, or b1 = b2, or (a1 − a3)b1 = (a1 + a3)b2, all of
which lead to trivial solutions of the original system, or

(a1 − a3)
3(a1 + a3)b

2
1 − (2a4

1 + 8a2
1a

2
3 − a4

3)b1b2 + (a1 − a3)(a1 + a3)
3b2

2 = 0.

The discriminant of the latter is

3a2
3(2a2

1 + a2
3)

2(4a2
1 − a2

3)

which accordingly is square precisely when

4a2
1 − a2

3 = 3 × (square).

Put

a1 = 3u2 + v2 and a3 = 6u2 − 2v2,

so that (without loss of generality, on changing the sign of v if necessary)

b1

b2

= − (u − v)(3u + v)3

3(3u − v)(u + v)3

and

b3

b2

=
2(3u2 + v2)(3u2 + 2uv + v2)

3(3u − v)(u + v)3
.

Then from (7),

−9(3u − v)2(u + v)6m2 + b2
2(9u4 − 24u3v − 26u2v2 − 8uv3 + v4)n2 = 0,
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that is,

U2 = V 4 − 8V 3 − 26V 2 − 24V + 9, (8)

where

V = v/u, U =
3(3u − v)(u + v)3

b2u2
m/n.

A Weierstrass model for (8) is

y2 = x3 + x2 − 4x + 32, (9)

and using the APECS program [4] of Ian Connell, or the tables of Cremona
([5]), where (9) is numbered as the curve 552E1, we discover that (8) is of
rank 1, with generator P (V, U) = (−9/4,−111/16). Accordingly, we can
construct infinitely many rational points (equivalently, integer points) on (1).
Indeed, from

a1 = 3u2 + v2, a2 = −3u2 − v2, a3 = 6u2 − 2v2,

b1 = −(u − v)(3u + v)3, b2 = 3(3u − v)(u + v)3

and b3 = 2(3u2 + v2)(3u2 + 2uv + v2),

with

U2 = V 4 − 8V 3 − 26V 2 − 24V + 9, V =
v

u
, U =

1

u2
m/n,

we obtain

x1 = (3 + V 2)U − 27 + 18V 2 + 8V 3 + V 4,

x2 = −(3 + V 2)U + 9 + 24V + 18V 2 − 3V 4,

x3 = 2(3 − V 2)U + 18 + 12V + 12V 2 + 4V 3 + 2V 4,

y1 = (3 + V 2)U + 27 − 18V 2 − 8V 3 − V 4, (10)

y2 = −(3 + V 2)U − 9 − 24V − 18V 2 + 3V 4,

y3 = 2(3 − V 2)U − 18 − 12V − 12V 2 − 4V 3 − 2V 4.

The point P (V, U) = (−9/4,−111/16) pulls back to the solution

(−815, 358, 1224;−776, 1233,−410),

and the point 2P (V, U) = (−148/33, 29219/1089) to the solution

(378382959,−931219912,−156845590; 357088490, 195748463,−932263416).
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Constructing elements in Shafarevich–Tate
groups of modular motives

Neil Dummigan William Stein Mark Watkins

Abstract

We study Shafarevich–Tate groups of motives attached to mod-
ular forms on Γ0(N) of weight > 2. We deduce a criterion for the
existence of nontrivial elements of these Shafarevich–Tate groups, and
give 16 examples in which a strong form of the Beilinson–Bloch conjec-
ture would imply the existence of such elements. We also use modular
symbols and observations about Tamagawa numbers to compute non-
trivial conjectural lower bounds on the orders of the Shafarevich–Tate
groups of modular motives of low level and weight ≤ 12. Our methods
build upon the idea of visibility due to Cremona and Mazur, but in
the context of motives rather than abelian varieties.

1 Introduction

Let E be an elliptic curve defined over Q and L(E, s) the associated L-
function. The conjecture of Birch and Swinnerton-Dyer [BS-D] predicts that
the order of vanishing of L(E, s) at s = 1 is the rank of the group E(Q) of
rational points, and also gives an interpretation of the leading term in the
Taylor expansion in terms of various quantities, including the order of the
Shafarevich–Tate group of E.

Cremona and Mazur [CM1] look, among all strong Weil elliptic curves over
Q of conductor N ≤ 5500, at those with nontrivial Shafarevich–Tate group
(according to the Birch and Swinnerton-Dyer conjecture). Suppose that the
Shafarevich–Tate group has predicted elements of prime order p. In most
cases they find another elliptic curve, often of the same conductor, whose
p-torsion is Galois-isomorphic to that of the first one, and which has positive
rank. The rational points on the second elliptic curve produce classes in the
common H1(Q, E[p]). They show [CM2] that these lie in the Shafarevich–
Tate group of the first curve, so rational points on one curve explain elements
of the Shafarevich–Tate group of the other curve.
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92 Shafarevich–Tate groups of modular motives

The Bloch–Kato conjecture [BK] is the generalisation to arbitrary motives
of the leading term part of the Birch and Swinnerton-Dyer conjecture. The
Beilinson–Bloch conjecture [B, Be] generalises the part about the order of
vanishing at the central point, identifying it with the rank of a certain Chow
group.

This paper is a partial generalisation of [CM1] and [AS] from abelian vari-
eties over Q associated to modular forms of weight 2 to the motives attached
to modular forms of higher weight. It also does for congruences between mod-
ular forms of equal weight what [Du2] did for congruences between modular
forms of different weights.

We consider the situation where two newforms f and g, both of even
weight k > 2 and level N , are congruent modulo a maximal ideal q of odd
residue characteristic, and L(g, k/2) = 0 but L(f, k/2) �= 0. It turns out that
this forces L(g, s) to vanish to order ≥ 2 at s = k/2. In Section 7, we give
sixteen such examples (all with k = 4 and k = 6), and in each example, we
find that q divides the numerator of the algebraic number L(f, k/2)/vol∞,
where vol∞ is a certain canonical period.

In fact, we show how this divisibility may be deduced from the vanishing
of L(g, k/2) using recent work of Vatsal [V]. The point is, the congruence
between f and g leads to a congruence between suitable “algebraic parts” of
the special values L(f, k/2) and L(g, k/2). In slightly more detail, a multi-
plicity one result of Faltings and Jordan shows that the congruence of Fourier
expansions leads to a congruence of certain associated cohomology classes.
These are then identified with the modular symbols which give rise to the
algebraic parts of special values. If L(g, k/2) vanishes then the congruence
implies that L(f, k/2)/vol∞ must be divisible by q.

The Bloch–Kato conjecture sometimes then implies that the Shafarevich–
Tate groupX attached to f has nonzero q-torsion. Under certain hypotheses
and assumptions, the most substantial of which is the Beilinson–Bloch conjec-
ture relating the vanishing of L(g, k/2) to the existence of algebraic cycles, we
are able to construct some of the predicted elements of X using the Galois-
theoretic interpretation of the congruence to transfer elements from a Selmer
group for g to a Selmer group for f . One might say that algebraic cycles for
one motive explain elements ofX for the other, or that we use the congruence
to link the Beilinson–Bloch conjecture for one motive with the Bloch–Kato
conjecture for the other.

We also compute data which, assuming the Bloch–Kato conjecture, pro-
vides lower bounds for the orders of numerous Shafarevich–Tate groups (see
Section 7.3). We thank the referee for many constructive comments.
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2 Motives and Galois representations

This section and the next provide definitions of some of the quantities ap-
pearing later in the Bloch–Kato conjecture. Let f =

∑
anq

n be a newform of
weight k ≥ 2 for Γ0(N), with coefficients in an algebraic number field E, which
is necessarily totally real. Let λ be any finite prime of E, and let � denote its
residue characteristic. A theorem of Deligne [De1] implies the existence of a
two-dimensional vector space Vλ over Eλ, and a continuous representation

ρλ : Gal(Q/Q)→ Aut(Vλ),

such that

1. ρλ is unramified at p for all primes p not dividing �N , and

2. if Frobp is an arithmetic Frobenius element at such a p then the char-
acteristic polynomial of Frob−1

p acting on Vλ is x2 − apx+ pk−1.

Following Scholl [Sc], we can construct Vλ as the λ-adic realisation of a
Grothendieck motive Mf . There are also Betti and de Rham realisations VB
and VdR, both 2-dimensional E-vector spaces. For details of the construction
see [Sc]. The de Rham realisation has a Hodge filtration VdR = F 0 ⊃ F 1 =
· · · = F k−1 ⊃ F k = {0}. The Betti realisation VB comes from singular
cohomology, while Vλ comes from étale �-adic cohomology. For each prime λ,
there is a natural isomorphism VB ⊗ Eλ � Vλ. We may choose a Gal(Q/Q)-
stable Oλ-module Tλ inside each Vλ. Define Aλ = Vλ/Tλ. Let A[λ] denote
the λ-torsion in Aλ. There is the Tate twist Vλ(j) (for any integer j), which
amounts to multiplying the action of Frobp by pj.

Following [BK], Section 3, for p �= � (including p =∞), we let

H1
f (Qp, Vλ(j)) = ker

(
H1(Dp, Vλ(j))→ H1(Ip, Vλ(j))

)
.

The subscript f stands for “finite part”; Dp is a decomposition subgroup
at a prime above p, Ip is the inertia subgroup, and the cohomology is for
continuous cocycles and coboundaries. For p = �, let

H1
f (Q�, Vλ(j)) = ker

(
H1(D�, Vλ(j))→ H1(D�, Vλ(j)⊗Q�

Bcris)
)

(see [BK], Section 1 for definitions of Fontaine’s rings Bcris and BdR). Let
H1
f (Q, Vλ(j)) be the subspace of elements of H

1(Q, Vλ(j)) whose local restric-
tions lie in H1

f (Qp, Vλ(j)) for all primes p.
There is a natural exact sequence

0→ Tλ(j)→ Vλ(j)
π−−→ Aλ(j)→ 0.



94 Shafarevich–Tate groups of modular motives

Let H1
f (Qp, Aλ(j)) = π∗H1

f (Qp, Vλ(j)). We then define the λ-Selmer group
H1
f (Q, Aλ(j)) as the subgroup of elements of H1(Q, Aλ(j)) whose local re-

strictions lie in H1
f (Qp, Aλ(j)) for all primes p. Note that the condition at

p =∞ is superfluous unless � = 2. Define the Shafarevich–Tate group

X(j) =
⊕
λ

H1
f (Q, Aλ(j))/π∗H1

f (Q, Vλ(j)).

Define an ideal #X(j) of OE, in which the exponent of any prime ideal λ
is the length of the λ-component of X(j). We shall only concern ourselves
with the case j = k/2, and write X for X(k/2). It depends on the choice of
Gal(Q/Q)-stable Oλ-module Tλ inside each Vλ. But if A[λ] is irreducible then
Tλ is unique up to scaling and the λ-part of X is independent of choices.

In the case k = 2 the motive comes from a (self-dual) isogeny class of
abelian varieties over Q, with endomorphism algebra containing E. We can
choose an abelian variety B in the isogeny class whose endomorphism ring
contains the full ring of integers OE. If one takes all the Tλ(1) to be λ-adic
Tate modules, then what we have defined above coincides with the usual
Shafarevich–Tate group of B (here we assume finiteness of the latter, or just
take the quotient by its maximal divisible subgroup). To see this one uses
[BK], 3.11 for � = p. For � �= p, H1

f (Qp, V�) = 0. Considering the formal
group, we can represent every class in B(Qp)/�B(Qp) by an �-power torsion
point in B(Qp), so that it maps to zero in H1(Qp, A�).

Define the group of global torsion points

ΓQ =
⊕
λ

H0(Q, Aλ(k/2)).

This is analogous to the group of rational torsion points on an elliptic curve.
Define an ideal #ΓQ of OE, in which the exponent of any prime ideal λ is the
length of the λ-component of ΓQ.

3 Canonical periods

From now on, we assume for convenience that N ≥ 3. We need to choose
convenient OE-lattices TB and TdR in the Betti and de Rham realisations VB
and VdR of Mf . We do this in such a way that TB and TdR ⊗OE

OE[1/Nk!]
agree respectively with the OE-lattice Mf,B and the OE[1/Nk!]-lattice Mf,dR

defined in [DFG1] using cohomology, with nonconstant coefficients, of mod-
ular curves. (See especially [DFG1], Sections 2.2 and 5.4, and the paragraph
preceding Lemma 2.3.)

For any finite prime λ of OE, define the Oλ module Tλ inside Vλ to be the
image of TB ⊗ Oλ under the natural isomorphism VB ⊗ Eλ � Vλ. Then the
Oλ-module Tλ is Gal(Q/Q)-stable.
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Let M(N) be the modular curve over Z[1/N ] parametrising generalised
elliptic curves with full level-N structure. Let E be the universal generalised
elliptic curve overM(N). Let Ek−2 be the (k−2)-fold fibre product of E over
M(N). (The motive Mf is constructed using a projector on the cohomology
of a desingularisation of Ek−2). We realise M(N)(C) as the disjoint union of
ϕ(N) copies of the quotient Γ(N)\H∗ (where H∗ is the completed upper half
plane), and let τ be a variable on H, so that the fibre Eτ is isomorphic to the
elliptic curve with period lattice generated by 1 and τ . Let zi ∈ C/〈1, τ〉 be a
variable on the ith copy of Eτ in the fibre product. Then 2πif(τ) dτ ∧ dz1 ∧
· · · ∧ dzk−2 is a well-defined differential form on (a desingularisation of) Ek−2

and naturally represents a generating element of F k−1TdR. (At least, we can
make our choices locally at primes dividing Nk! so that this is the case.) We
shall call this element e(f).

Under the de Rham isomorphism between VdR⊗C and VB⊗C, e(f) maps
to some element ωf . There is a natural action of complex conjugation on
VB, breaking it up into one-dimensional E-vector spaces V

+
B and V −

B . Let ω
+
f

and ω−
f be the projections of ωf to V +

B ⊗ C and V −
B ⊗ C respectively. Let

T±
B be the intersections of V ±

B with TB. These are rank one OE-modules,
but not necessarily free, since the class number of OE may be greater than
one. Choose nonzero elements δ±f of T

±
B and let a± be the ideals [T±

B : OEδ
±
f ].

Define complex numbers Ω±
f by ω±

f = Ω
±
f δ

±
f .

4 The Bloch–Kato conjecture

In this section we extract from the Bloch–Kato conjecture for L(f, k/2) a
prediction about the order of the Shafarevich–Tate group, by analysing the
other terms in the formula.

Let L(f, s) be the L-function attached to f . For �(s) > k+1
2
it is defined

by the Dirichlet series with Euler product
∑∞

n=1 ann
−s =

∏
p(Pp(p

−s))−1, but
there is an analytic continuation given by an integral, as described in the
next section. Suppose that L(f, k/2) �= 0. The Bloch–Kato conjecture for
the motive Mf (k/2) predicts the following equality of fractional ideals of E:

L(f, k/2)

vol∞
=

(∏
p

cp(k/2)

)
#X

a±(#ΓQ)2
.

Here, and from this point onwards, ± represents the parity of (k/2)− 1.
The quantity vol∞ is equal to (2πi)k/2 multiplied by the determinant of the
isomorphism V ±

B ⊗C � (VdR/F
k/2)⊗C, calculated with respect to the lattices
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OEδ
±
f and the image of TdR. For l �= p, ordλ(cp(j)) is defined to be

lengthH1
f (Qp, Tλ(j))tors − ordλ(Pp(p−j))

= length
(
H0(Qp, Aλ(j))/H

0
(
Qp, Vλ(j)

Ip/Tλ(j)
Ip
))

.

We omit the definition of ordλ(cp(j)) for λ | p, which requires one to
assume Fontaine’s de Rham conjecture ([Fo1], Appendix A6), and depends
on the choices of TdR and TB, locally at λ. (We shall mainly be concerned
with the q-part of the Bloch–Kato conjecture, where q is a prime of good
reduction. For such primes, the de Rham conjecture follows from Faltings
[Fa], Theorem 5.6.)

Strictly speaking, the conjecture in [BK] is only given for E = Q. We
have taken here the obvious generalisation of a slight rearrangement of [BK],
(5.15.1). The Bloch–Kato conjecture has been reformulated and generalised
by Fontaine and Perrin-Riou, who work with general E, though that is not
really the point of their work. [Fo2], Section 11 sketches how to deduce the
original conjecture from theirs, in the case E = Q.

Lemma 4.1 vol∞/a± = c(2πi)k/2a±Ω±, with c ∈ E and ordλ(c) = 0 for
λ � Nk!.

Proof We note that vol∞ is equal to (2πi)k/2 times the determinant of the
period map from F k/2VdR ⊗ C to V ±

B ⊗ C, with respect to lattices dual to
those we used above in the definition of vol∞ (cf. [De2], last paragraph of
1.7). Here we are using natural pairings. Meanwhile, Ω± is the determinant
of the same map with respect to the lattices F k/2TdR and OEδ

±
f . Recall that

the index of OEδ
±
f in T±

B is the ideal a±. Then the proof is completed by
noting that, locally away from primes dividing Nk!, the index of TdR in its
dual is equal to the index of TB in its dual, both being equal to the ideal
denoted η in [DFG2]. �

Remark 4.2 Note that the “quantities” a±Ω± and vol∞/a± are independent
of the choice of δ±f .

Lemma 4.3 Let p � N be a prime and j an integer. Then the fractional ideal
cp(j) is supported at most on divisors of p.

Proof As on [Fl2], p. 30, for odd l �= p, ordλ(cp(j)) is the length of the finite
Oλ-module H0(Qp, H

1(Ip, Tλ(j))tors), where Ip is an inertia group at p. But
Tλ(j) is a trivial Ip-module, so H1(Ip, Tλ(j)) is torsion free. �
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Lemma 4.4 Let q � N be a prime satisfying q > k. Suppose that A[q] is an
irreducible representation of Gal(Q/Q), where q | q. Let p | N be a prime, and
if p2 | N suppose that p �≡ ±1 (mod q). Suppose also that f is not congruent
modulo q (for Fourier coefficients of index coprime to Nq) to any newform
of weight k, trivial character, and level dividing N/p. Then ordq(cp(j)) = 0
for all integers j.

Proof There is a natural injective map from Vq(j)
Ip/Tq(j)

Ip toH0(Ip, Aq(j))
(i.e., Aq(j)

Ip). Consideration of q-torsion shows that

dimOE/q H
0(Ip, A[q](j)) ≥ dimEq H0(Ip, Vq(j)).

To prove the lemma it suffices to show that

dimOE/q H
0(Ip, A[q](j)) = dimEq H0(Ip, Vq(j)),

since this ensures that H0(Ip, Aq(j)) = Vq(j)
Ip/Tq(j)

Ip , and therefore that
H0(Qp, Aq(j)) = H0(Qp, Vq(j)

Ip/Tq(j)
Ip).

Suppose that Condition (b) of [L], Proposition 2.3 is not satisfied. Then
there exists a character χ : Gal(Q/Q) → O×

q of q-power order such that the
p-part of the conductor of Vq ⊗ χ is strictly smaller than that of Vq. Let
fχ denote the newform, of level dividing N/p, associated with Vq ⊗ χ. The
character of fχ has conductor at worst p. Since χ has conductor p and q-power
order, p ≡ 1 (mod q), so by hypothesis p2 � N . Hence fχ has level coprime to
p and must have trivial character. Then the existence of fχ contradicts our
hypotheses.

Suppose now that

dimOE/q H
0(Ip, A[q](j)) > dimEq H0(Ip, Vq(j)),

(if not, there is nothing to prove). If Condition (a) of [L], Proposition 2.3
were not satisfied then [L], Proposition 2.2 would imply the existence of an
impossible twist, as in the previous paragraph. (Here we are also using [L],
Proposition 1.1.)

Since Condition (c) is clearly also satisfied, we are in a situation covered by
one of the three cases in [L], Proposition 2.3. Since p �≡ −1 (mod q) if p2 | N ,
Case 3 is excluded, so A[q](j) is unramified at p and ordp(N) = 1. (Here we
are using Carayol’s result that N is the prime-to-q part of the conductor of
Vq [Ca1].) But then [JL], Theorem 1 (which uses the condition q > k) implies
the existence of a newform of weight k, trivial character and level dividing
N/p, congruent to g modulo q, for Fourier coefficients of index coprime to
Nq. This contradicts our hypotheses. �

Remark 4.5 For an example of what can be done when f is congruent to a
form of lower level, see the first example in Section 7.4 below.

Lemma 4.6 If q | q is a prime of E such that q � Nk!, then ordq(cq) = 0.
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Proof It follows from [DFG1], Lemma 5.7 (whose proof relies on an ap-
plication, at the end of Section 2.2, of the results of [Fa]) that Tq is the
Oq[Gal(Qq/Qq)]-module associated to the filtered module TdR ⊗ Oq by the
functor they call V. (This property is part of the definition of an S-integral
premotivic structure given in [DFG1], Section 1.2.) Given this, the lemma
follows from [BK], Theorem 4.1(iii). (That V is the same as the functor used
in [BK], Theorem 4.1 follows from [Fa], first paragraph of 2(h).) �

Lemma 4.7 If A[λ] is an irreducible representation of Gal(Q/Q), then

ordλ(#ΓQ) = 0.

Proof This follows trivially from the definition. �
Putting together the above lemmas we arrive at the following:

Proposition 4.8 Let q � N be a prime satisfying q > k and suppose that
A[q] is an irreducible representation of Gal(Q/Q), where q | q. Assume the
same hypotheses as in Lemma 4.4 for all p | N . Choose TdR and TB which
locally at q are as in the previous section. If L(f, k/2)a±/vol∞ �= 0 then the
Bloch–Kato conjecture predicts that

ordq(#X) = ordq(L(f, k/2)a
±/vol∞).

5 Congruences of special values

Let f =
∑

anq
n and g =

∑
bnq

n be newforms of equal weight k ≥ 2 for
Γ0(N). Let E be a number field large enough to contain all the coefficients
an and bn. Suppose that q | q is a prime of E such that f ≡ g (mod q),
i.e. an ≡ bn (mod q) for all n. Assume that A[q] is an irreducible repre-
sentation of Gal(Q/Q) and that q � Nϕ(N)k!. Choose δ±f ∈ T±

B in such a

way that ordq(a
±) = 0, i.e., δ±f generates T±

B locally at q. Make two further
assumptions:

L(f, k/2) �= 0 and L(g, k/2) = 0.

Proposition 5.1 With assumptions as above, ordq(L(f, k/2)/vol∞) > 0.

Proof This is based on some of the ideas used in [V], Section 1. Note
the apparent typographical error in [V], Theorem 1.13 which should presum-
ably refer to “Condition 2”. Since ordq(a

±) = 0, we just need to show that
ordq

(
L(f, k/2)/((2πi)k/2Ω±)

)
> 0, where ±1 = (−1)(k/2)−1. It is well known,

and easy to prove, that∫ ∞

0

f(iy)ys−1dy = (2π)−sΓ(s)L(f, s).
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Hence, if for 0 ≤ j ≤ k − 2 we define the jth period

rj(f) =

∫ i∞

0

f(z)zjdz,

where the integral is taken along the positive imaginary axis, then

rj(f) = j!(−2πi)−(j+1)Lf (j + 1).

Thus we are reduced to showing that ordq(r(k/2)−1(f)/Ω±) > 0.
LetD0 be the group of divisors of degree zero supported on P1(Q). For a Z-

algebra R and integer r ≥ 0, let Pr(R) be the additive group of homogeneous
polynomials of degree r in R[X, Y ]. Both these groups have a natural action
of Γ1(N). Let SΓ1(N)(k,R) := HomΓ1(N)(D0, Pk−2(R)) be the R-module of
weight k modular symbols for Γ1(N).

Via the isomorphism (8) of [V], Section 1.5 combined with the argument
of [V], 1.7, the cohomology class ω±

f corresponds to a modular symbol Φ
±
f ∈

SΓ1(N)(k,C), and δ±f corresponds to an element ∆
±
f ∈ SΓ1(N)(k,OE,q). We are

now dealing with cohomology over X1(N) rather than M(N), which is why
we insist that q � ϕ(N). It follows from the last line of [St], Section 4.2 that,
up to some small factorials which do not matter locally at q,

Φ±
f ([∞]− [0]) =

k−2∑
j=0,

j≡(k/2)−1 (mod 2)

rf (j)X
jY k−2−j.

Since ω±
f = Ω

±
f δ

±
f , we see that

∆±
f ([∞]− [0]) =

k−2∑
j=0,

j≡(k/2)−1 (mod 2)

(rf (j)/Ω
±
f )X

jY k−2−j.

The coefficient of X(k/2)−1Y (k/2)−1 is what we would like to show is divisible
by q. Similarly

Φ±
g ([∞]− [0]) =

k−2∑
j=0,

j≡(k/2)−1 (mod 2)

rg(j)X
jY k−2−j.

The coefficient of X(k/2)−1Y (k/2)−1 in this is 0, since L(g, k/2) = 0. Therefore
it would suffice to show that, for some µ ∈ OE, the element ∆

±
f − µ∆±

g is
divisible by q in SΓ1(N)(k,OE,q). It suffices to show that, for some µ ∈ OE,
the element δ±f − µδ±g is divisible by q, considered as an element of q-adic
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cohomology of X1(N) with nonconstant coefficients. This would be the case
if δ±f and δ±g generate the same one-dimensional subspace upon reduction
modulo q. But this is a consequence of [FJ], Theorem 2.1(1) (for which we
need the irreducibility of A[q]). �

Remark 5.2 The signs in the functional equations of L(f, s) and L(g, s) are
equal. They are determined by the eigenvalue of the Atkin–Lehner involu-
tion WN , which is determined by aN and bN modulo q, because aN and bN
are each Nk/2−1 times this sign and q has residue characteristic coprime to
2N . The common sign in the functional equation is (−1)k/2wN , where wN is
the common eigenvalue of WN acting on f and g.

This is analogous to [CM1], remark at the end of Section 3, which shows
that if q has odd residue characteristic and L(f, k/2) �= 0 but L(g, k/2) = 0
then L(g, s) must vanish to order at least two at s = k/2. Note that Maeda’s
conjecture implies that there are no examples of g of level one with positive
sign in their functional equation such that L(g, k/2) = 0 (see [CF]).

6 Constructing elements of the Shafarevich–

Tate group

Let f , g and q be as in the first paragraph of the previous section. In the
previous section we showed how the congruence between f and g relates
the vanishing of L(g, k/2) to the divisibility by q of an “algebraic part” of
L(f, k/2). Conjecturally the former is associated with the existence of certain
algebraic cycles (for Mg) while the latter is associated with the existence
of certain elements of the Shafarevich–Tate group (for Mf , as we saw in
§4). In this section we show how the congruence, interpreted in terms of
Galois representations, provides a direct link between algebraic cycles and
the Shafarevich–Tate group.

For f we have defined Vλ, Tλ and Aλ. Let V ′
λ, T ′

λ and A′
λ be the cor-

responding objects for g. Since ap is the trace of Frob
−1
p on Vλ, it follows

from the Chebotarev Density Theorem that A[q] and A′[q], if irreducible, are
isomorphic as Gal(Q/Q)-modules.

Recall that L(g, k/2) = 0 and L(f, k/2) �= 0. Since the sign in the func-
tional equation for L(g, s) is positive (this follows from L(f, k/2) �= 0, see Re-
mark 5.2), the order of vanishing of L(g, s) at s = k/2 is at least 2. According
to the Beilinson–Bloch conjecture [B, Be], the order of vanishing of L(g, s)

at s = k/2 is the rank of the group CH
k/2
0 (Mg)(Q) of Q-rational rational

equivalence classes of null-homologous, algebraic cycles of codimension k/2
on the motive Mg. (This generalises the part of the Birch–Swinnerton-Dyer
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conjecture which says that for an elliptic curve E/Q, the order of vanishing
of L(E, s) at s = 1 is equal to the rank of the Mordell-Weil group E(Q).)

Via the q-adic Abel–Jacobi map, CH
k/2
0 (Mg)(Q) maps to H1(Q, V ′

q(k/2)),
and its image is contained in the subspace H1

f (Q, V ′
q(k/2)), by [Ne], 3.1 and

3.2. If, as expected, the q-adic Abel–Jacobi map is injective, we get (assuming
also the Beilinson–Bloch conjecture) a subspace of H1

f (Q, V ′
q(k/2)) of dimen-

sion equal to the order of vanishing of L(g, s) at s = k/2. In fact, one could
simply conjecture that the dimension of H1

f (Q, V ′
q(k/2)) is equal to the order

of vanishing of L(g, s) at s = k/2. This would follow from the “conjectures”
Cr(M) and Ci

λ(M) of [Fo2], Sections 1 and 6.5. We shall call it the “strong”
Beilinson–Bloch conjecture.

Similarly, if L(f, k/2) �= 0 then we expect that H1
f (Q, Vq(k/2)) = 0, so

that H1
f (Q, Aq(k/2)) coincides with the q-part of X.

Theorem 6.1 Let q � N be a prime satisfying q > k. Let r be the dimen-
sion of H1

f (Q, V ′
q(k/2)). Suppose that A[q] is an irreducible representation of

Gal(Q/Q) and that for no prime p | N is f congruent modulo q (for Fourier
coefficients of index coprime to Nq) to a newform of weight k, trivial char-
acter and level dividing N/p. Suppose that, for all primes p | N , p �≡ −wp

(mod q), with p �≡ ±1 (mod q) if p2 | N . (Here wp is the common eigenvalue
of the Atkin–Lehner involution Wp acting on f and g.) Then the q-torsion
subgroup of H1

f (Q, Aq(k/2)) has Fq-rank at least r.

Proof The theorem is trivially true if r = 0, so we assume that r >
0. It follows easily from our hypothesis that the rank of the free part of
H1
f (Q, T ′

q(k/2)) is r. The natural map from H1
f (Q, T ′

q(k/2))/qH
1
f (Q, T ′

q(k/2))
to H1(Q, A′[q](k/2)) is injective. Take a nonzero class c in the image, which
has Fq-rank r. Choose d ∈ H1

f (Q, T ′
q(k/2)) mapping to c. Consider the

Gal(Q/Q)-cohomology of the short exact sequence

0→ A[q](k/2)→ Aq(k/2)
π−−→ Aq(k/2)→ 0,

where π is multiplication by a uniformising element of Oq. By irreducibil-
ity, H0(Q, A[q](k/2)) is trivial. Hence H0(Q, Aq(k/2)) is trivial, so that
H1(Q, A[q](k/2)) injects into H1(Q, Aq(k/2)), and we get a nonzero q-torsion
class γ ∈ H1(Q, Aq(k/2)).

Our aim is to show that resp(γ) ∈ H1
f (Qp, Aq(k/2)), for all (finite) primes

p. We consider separately the cases p � qN , p | N and p = q.

Case 1, p � qN :

Consider the Ip-cohomology of the short exact sequence

0→ A′[q](k/2)→ A′
q(k/2)

π−−→ A′
q(k/2)→ 0
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(the analogue for g of the above).
Since in this case A′

q(k/2) is unramified at p, H
0(Ip, A

′
q(k/2)) = A′

q(k/2),
which is q-divisible. Therefore H1(Ip, A

′[q](k/2)) (which, remember, is the
same as H1(Ip, A[q](k/2))) injects into H1(Ip, A

′
q(k/2)). It follows from the

fact that d ∈ H1
f (Q, T ′

q(k/2)) that the image in H1(Ip, A
′
q(k/2)) of the re-

striction of c is zero, hence that the restriction of c to H1(Ip, A
′[q](k/2)) �

H1(Ip, A[q](k/2)) is zero. Hence the restriction of γ to H1(Ip, Aq(k/2)) is also
zero. By [Fl1], line 3 of p. 125, H1

f (Qp, Aq(k/2)) is equal to (not just con-
tained in) the kernel of the map from H1(Qp, Aq(k/2)) to H1(Ip, Aq(k/2)), so
we have shown that resp(γ) ∈ H1

f (Qp, Aq(k/2)).

Case 2, p | N :

We first show that H0(Ip, A
′
q(k/2)) is q-divisible. It suffices to show that

dimH0(Ip, A
′[q](k/2)) = dimH0(Ip, V

′
q(k/2)),

since then the natural map from H0(Ip, V
′

q(k/2)) to H0(Ip, A
′
q(k/2)) is surjec-

tive; this may be done as in the proof of Lemma 4.4. It follows as above that
the image of c ∈ H1(Q, A[q](k/2)) in H1(Ip, A[q](k/2)) is zero. Then resp(c)
comes from H1(Dp/Ip, H

0(Ip, A[q](k/2))), by inflation-restriction. The order
of this group is the same as the order of the group H0(Qp, A[q](k/2)) (this
is [W], Lemma 1), which we claim is trivial. By the work of Carayol [Ca1],
the level N is the conductor of Vq(k/2), so p | N implies that Vq(k/2) is
ramified at p, hence dimH0(Ip, Vq(k/2)) = 0 or 1. As above, we see that
dimH0(Ip, Vq(k/2)) = dimH0(Ip, A[q](k/2)), so we need only consider the
case where this common dimension is 1. The (motivic) Euler factor at p for
Mf is (1 − αp−s)−1, where Frob−1

p acts as multiplication by α on the one-
dimensional space H0(Ip, Vq). It follows from [Ca1], Theoréme A that this is
the same as the Euler factor at p of L(f, s). By [AL], Theorems 3(ii) and 5,
it then follows that p2 � N and α = −wpp

(k/2)−1, where wp = ±1 is such that
Wpf = wpf . We twist by k/2, so that Frob−1

p acts on H0(Ip, Vq(k/2)) (hence
also on H0(Ip, A[q](k/2))) as −wpp

−1. Since p �≡ −wp (mod q), we see that
H0(Qp, A[q](k/2)) is trivial. Hence resp(c) = 0 so resp(γ) = 0 and certainly
lies in H1

f (Qp, Aq(k/2)).

Case 3, p = q:

Since q � N is a prime of good reduction for the motiveMg, V ′
q is a crystalline

representation of Gal(Qq/Qq), which means that Dcris(V
′

q) and V ′
q have the

same dimension, where Dcris(V
′

q) := H0(Qq, V
′

q ⊗Qq Bcris). (This is a conse-
quence of [Fa], Theorem 5.6.) As already noted in the proof of Lemma 4.6,
Tq is the Oq[Gal(Qq/Qq)]-module associated to the filtered module TdR ⊗Oq.
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Since also q > k, we may now prove, in the same manner as [Du1], Proposi-
tion 9.2, that resq(γ) ∈ H1

f (Qq, Aq(k/2)). For the convenience of the reader,
we give some details.

In [BK], Lemma 4.4, a cohomological functor {hi}i≥0 is constructed on the
Fontaine–Lafaille category of filtered Dieudonné modules over Zq. h

i(D) = 0
for all i ≥ 2 and all D, and hi(D) = Exti(1FD, D) for all i and D, where 1FD
is the “unit” filtered Dieudonné module.

Now let D = TdR ⊗Oq and D′ = T ′
dR ⊗Oq. By [BK], Lemma 4.5(c),

h1(D) � H1
e (Qq, Tq),

where

H1
e (Qq, Tq) = ker(H

1(Qq, Tq)→ H1(Qq, Vq)/H
1
e (Qq, Vq))

and
H1
e (Qq, Vq) = ker(H

1(Qq, Vq)→ H1(Qq, B
f=1
cris ⊗Qq Vq)).

Likewise h1(D′) � H1
e (Qq, T

′
q). When applying results of [BK] we view D, Tq

etc. simply as Zq-modules, forgetting the Oq-structure.
For an integer j, let D(j) be D with the Hodge filtration shifted by j.

Then
h1(D(j)) � H1

e (Qq, Tq(j))

(provided that k− p+1 < j < p− 1, so that D(j) satisfies the hypotheses of
[BK], Lemma 4.5). By [BK], Corollary 3.8.4,

H1
f (Qq, Vq(j))/H

1
e (Qq, Vq(j)) � (D(j)⊗Zq Qq)/(1− f)(D(j)⊗Zq Qq),

where f is the Frobenius operator on crystalline cohomology. By Scholl [Sc],
1.2.4(ii), and the Weil conjectures, H1

e (Qq, Vq(j)) = H1
f (Qq, Vq(j)), since j �=

(k − 1)/2. Similarly H1
e (Qq, V

′
q(j)) = H1

f (Qq, V
′

q(j)).
We have

h1(D(k/2)) � H1
f (Qq, Tq(k/2)) and h1(D′(k/2)) � H1

f (Qq, T
′
q(k/2)).

The exact sequence in [BK], middle of p. 366, gives a commutative diagram

h1(D′(k/2)) π−−−→ h1(D′(k/2)) −−−→ h1(D′(k/2)/qD′(k/2))� � �
H1(Qq, T

′
q(k/2))

π−−−→ H1(Qq, T
′
q(k/2)) −−−→ H1(Qq, A

′[q](k/2)).

The vertical arrows are all inclusions, and we know the image of h1(D′(k/2))
in H1(Qq, T

′
q(k/2)) is exactly H1

f (Qq, T
′
q(k/2)). The top right horizontal map

is surjective since h2(D′(k/2)) = 0.
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The class resq(c) ∈ H1(Qq, A
′[q](k/2)) is in the image of H1

f (Qq, T
′
q(k/2)),

by construction, and therefore is in the image of h1(D′(k/2)/qD′(k/2)). By
the fullness and exactness of the Fontaine–Lafaille functor [FL] (see [BK],
Theorem 4.3), D′(k/2)/qD′(k/2) is isomorphic to D(k/2)/qD(k/2).

It follows that the class resq(c) ∈ H1(Qq, A[q](k/2)) is in the image of
h1(D(k/2)/qD(k/2)) by the vertical map in the exact sequence analogous
to the above. Since the map from h1(D(k/2)) to h1(D(k/2)/qD(k/2)) is
surjective, resq(c) lies in the image of H

1
f (Qq, Tq(k/2)). From this it follows

that resq(γ) ∈ H1
f (Qq, Aq(k/2)), as desired. �

[AS], Theorem 2.7 is concerned with verifying local conditions in the case
k = 2, where f and g are associated with abelian varieties A and B. (Their
theorem also applies to abelian varieties over number fields.) Our restriction
outlawing congruences modulo q with cusp forms of lower level is analogous
to theirs forbidding q from dividing Tamagawa factors cA,l and cB,l. (In the
case where A is an elliptic curve with ordl(j(A)) < 0, consideration of a Tate
parametrisation shows that if q | cA,l, i.e., if q | ordl(j(A)), then it is possible
that A[q] is unramified at l.)

In this paper we have encountered two technical problems which we dealt
with in quite similar ways:

1. dealing with the q-part of cp for p | N ;
2. proving local conditions at primes p | N , for an element of q-torsion.

If our only interest was in testing the Bloch–Kato conjecture at q, we could
have made these problems cancel out, as in [DFG1], Lemma 8.11, by weaken-
ing the local conditions. However, we have chosen not to do so, since we are
also interested in the Shafarevich–Tate group, and since the hypotheses we
had to assume are not particularly strong. Note that, since A[q] is irreducible,
the q-part of X does not depend on the choice of Tq.

7 Examples and Experiments

This section contains tables and numerical examples illustrating the main
themes of this paper. In Section 7.1, we explain Table 1, which contains 16 ex-
amples of pairs f, g such that the strong Beilinson–Bloch conjecture and Theo-
rem 6.1 together imply the existence of nontrivial elements of the Shafarevich–
Tate group of the motive attached to f . Section 7.2 outlines the higher-weight
modular symbol computations used in making Table 1. Section 7.3 discusses
Table 2, which summarizes the results of an extensive computation of conjec-
tural orders of Shafarevich–Tate groups for modular motives of low level and
weight. Section 7.4 gives specific examples in which various hypotheses fail.
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Note that in §7 “modular symbol” has a different meaning from in §5, being
related to homology rather than cohomology. For precise definitions see [SV].

7.1 Table 1: visible X

Table 1 lists sixteen pairs of newforms f and g (of equal weights and levels)

g deg g f deg f possible q

127k4A 1 127k4C 17 43

159k4B 1 159k4E 16 5, 23

365k4A 1 365k4E 18 29

369k4B 1 369k4I 9 13

453k4A 1 453k4E 23 17

465k4B 1 465k4I 7 11

477k4B 1 477k4L 12 73

567k4B 1 567k4H 8 23

581k4A 1 581k4E 34 192

657k4A 1 657k4C 7 5

657k4A 1 657k4G 12 5

681k4A 1 681k4D 30 59

684k4C 1 684k4K 4 72

95k6A 1 95k6D 9 31, 59

122k6A 1 122k6D 6 73

260k6A 1 260k6E 4 17

Table 1: Visible X

along with at least one prime q such that there is a prime q | q with f ≡ g
(mod q). In each case, ords=k/2 L(g, k/2) ≥ 2 while L(f, k/2) �= 0. It uses the
following notation: the first column contains a label whose structure is

[Level]k[Weight][GaloisOrbit]

This label determines a newform g =
∑

anq
n up to Galois conjugacy. For

example, 127k4C denotes a newform in the third Galois orbit of newforms in
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S4(Γ0(127)). Galois orbits are ordered first by the degree of Q(. . . , an, . . . ),
then by the sequence of absolute values |Tr(ap(g))| for p not dividing the
level, with positive trace being first in the event that the two absolute values
are equal, and the first Galois orbit is denoted A, the second B, and so on.
The second column contains the degree of the field Q(. . . , an, . . . ). The third
and fourth columns contain f and its degree, respectively. The fifth column
contains at least one prime q such that there is a prime q | q with f ≡ g
(mod q), and such that the hypotheses of Theorem 6.1 are satisfied for f , g,
and q.

For the two examples 581k4E and 684k4K, the square of a prime q
appears in the q-column, which means that q2 divides the order of the group
Sk(Γ0(N),Z)/(W +W⊥) defined at the end of 7.3 below.

We describe the first line of Table 1 in more detail. The next section gives
further details on how the computations were performed.

Using modular symbols, we find that there is a newform

g = q − q2 − 8q3 − 7q4 − 15q5 + 8q6 − 25q7 + · · · ∈ S4(Γ0(127))

with L(g, 2) = 0. Because W127(g) = g, the functional equation has sign +1,
so L′(g, 2) = 0 as well. We also find a newform f ∈ S4(Γ0(127)) whose Fourier
coefficients generate a number field K of degree 17, and by computing the
image of the modular symbol XY {0,∞} under the period mapping, we find
that L(f, 2) �= 0. The newforms f and g are congruent modulo a prime q

of K of residue characteristic 43. The mod q reductions of f and g are both
equal to

f = q + 42q2 + 35q3 + 36q4 + 28q5 + 8q6 + 18q7 + · · · ∈ F43[[q]].

There is no form in the Eisenstein subspaces ofM4(Γ0(127)) whose Fourier
coefficients of index n, with (n, 127) = 1, are congruent modulo 43 to those
of f , so ρf,q ≈ ρg,q is irreducible. Since 127 is prime and S4(SL2(Z)) = 0, f
does not arise from a level 1 form of weight 4. Thus we have checked the
hypotheses of Theorem 6.1, so if r is the dimension of H1

f (Q, V ′
q(k/2)) then

the q-torsion subgroup of H1
f (Q, Aq(k/2)) has Fq-rank at least r.

Recall that since ords=k/2 L(g, s) ≥ 2, we expect that r ≥ 2. Then, since
L(f, k/2) �= 0, we expect that the q-torsion subgroup of H1

f (Q, Aq(k/2)) is
equal to the q-torsion subgroup ofX. Admitting these assumptions, we have
constructed the q-torsion in X predicted by the Bloch–Kato conjecture.

For particular examples of elliptic curves one can often find and write
down rational points predicted by the Birch and Swinnerton-Dyer conjec-
ture. It would be nice if likewise one could explicitly produce algebraic cycles
predicted by the Beilinson–Bloch conjecture in the above examples. Since
L′(g, k/2) = 0, Heegner cycles have height zero (see [Z], Corollary 0.3.2), so

ought to be trivial in CH
k/2
0 (Mg)⊗ Q.
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7.2 How the computation was performed

We give a brief summary of how the computation was performed. The al-
gorithms we used were implemented by the second author, and most are a
standard part of MAGMA (see [BCP]).

Let g, f , and q be some data from a line of Table 1 and let N denote
the level of g. We verified the existence of a congruence modulo q, that
L(g, k/2) = L′(g, k/2) = 0 and L(f, k/2) �= 0, and that ρf,q = ρg,q is irre-
ducible and does not arise from any Sk(Γ0(N/p)), as follows:

To prove there is a congruence, we showed that the corresponding integral
spaces of modular symbols satisfy an appropriate congruence, which forces
the existence of a congruence on the level of Fourier expansions. We showed
that ρg,q is irreducible by computing a set that contains all possible residue
characteristics of congruences between g and any Eisenstein series of level
dividing N , where by congruence, we mean a congruence for all Fourier co-
efficients of index n with (n,N) = 1. Similarly, we checked that g is not
congruent to any form h of level N/p for any p that exactly divides N by
listing a basis of such h and finding the possible congruences, where again we
disregard the Fourier coefficients of index not coprime to N .

To verify that L(g, k/2) = 0, we computed the image of the modular

symbol e = X
k
2
−1Y

k
2
−1{0,∞} under a map with the same kernel as the

period mapping, and found that the image was 0. The period mapping sends
the modular symbol e to a nonzero multiple of L(g, k

2
), so that e maps to 0

implies that L(g, k/2) = 0. In a similar way, we verified that L(f, k/2) �= 0.
Next, we checked that WN(g) = (−1)k/2g which, because of the functional
equation, implies that L′(g, k/2) = 0. Table 1 is of independent interest
because it includes examples of modular forms of even weight > 2 with a
zero at k/2 that is not forced by the functional equation. We found no such
examples of weights ≥ 8.

7.3 Conjecturally nontrivial X

In this section we apply some of the results of Section 4 to compute lower
bounds on conjectural orders of Shafarevich–Tate groups of many modular
motives. The results of this section suggest that X of a modular motive
is usually “not visible at level N”, that is, not explained by congruences at
level N (compare with the observations of [CM1] and [AS]). For example,
when k > 6 we find many examples of conjecturally nontrivial X but no
examples of nontrivial visible X.

For any newform f , let L(Mf/Q, s) =
∏d

i=1 L(f
(i), s) where f (i) runs over

the Gal(Q/Q)-conjugates of f . Let T be the complex torus Cd/(2πi)k/2L,
where L is the lattice defined by integrating integral cuspidal modular symbols
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for Γ0(N) against the conjugates of f . Let ΩMf/Q denote the volume of

the (−1)(k/2)−1 eigenspace T± = {z ∈ T : z = (−1)(k/2)−1z} for complex
conjugation on T .

Lemma 7.1 Suppose that p � Nk! is such that f is not congruent to any of
its Galois conjugates modulo a prime dividing p. Then the p-parts of

L(Mf/Q, k/2)

ΩMf/Q

and Norm

(
L(f, k/2)

vol∞
a±
)

are equal, where vol∞ is as in Section 4.

Proof Let H be the Z-module of all integral cuspidal modular symbols for
Γ0(N). Let I be the image ofH under projection into the submodule ofH⊗Q
corresponding to f and its Galois conjugates. Note that I is not necessarily
contained in H, but it is contained in H ⊗ Z[ 1

m
] where m is divisible by the

residue characteristics of any primes of congruence between f and cuspforms
of weight k for Γ0(N) which are not Galois conjugate to f .

The lattice L defined before the lemma is obtained (up to divisors of Nk!)
by pairing the cohomology modular symbols Φ±

f (i) (as in §5) with the homology
modular symbols in H; equivalently, since the pairing factors through the
map H → I, the lattice L is obtained by pairing with the elements of I. For
1 ≤ i ≤ d let Ii be the OE-module generated by the image of the projection
of I into I ⊗E corresponding to f (i). The finite index of I ⊗OE in

⊕d
i=1 Ii is

divisible only by primes of congruence between f and its Galois conjugates.
Up to these primes, ΩMf/Q/(2πi)

((k/2)−1)d is then a product of the d quantities
obtained by pairing Φ±

f (i) with Ii, for 1 ≤ i ≤ d. (These quantities inhabit

a kind of tensor product of C∗ over E∗ with the group of fractional ideals of
E.) Bearing in mind the last line of §3, we see that these quantities are the
a±Ω±

f (i) , up to divisors of Nk!. Now we may apply Lemma 4.1. We then have

a factorisation of the left hand side which shows it to be equal to the right
hand side, to the extent claimed by the lemma. Note that L(f,k/2)

vol∞ a± has an
interpretation in terms of integral modular symbols, as in §5, and just gets
Galois conjugated when one replaces f by some f (i). �

Remark 7.2 The newform f = 319k4C is congruent to one of its Galois
conjugates modulo 17 and 17 divides L(Mf/Q, k/2)/ΩMf/Q, so the lemma and

our computations say nothing about whether 17 divides Norm
(
L(f,k/2)

vol∞ a±
)
or

otherwise.

Let S be the set of newforms with level N and weight k satisfying either
k = 4 and N ≤ 321, or k = 6 and N ≤ 199, or k = 8 and N ≤ 149, or k = 10
and N ≤ 72, or k = 12 and N ≤ 49. Given f ∈ S, let B be defined as follows:
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1. Let L1 be the numerator of the rational number L(Mf/Q, k/2)/ΩMf/Q.
If L1 = 0 let B = 1 and terminate.

2. Let L2 be the part of L1 that is coprime to Nk!.

3. Let L3 be the part of L2 that is coprime to p± 1 for every prime p such
that p2 | N .

4. Let L4 be the part of L3 coprime to the residue characteristic of any
prime of congruence between f and a form of weight k, trivial charac-
ter and lower level. (By congruence here, we mean a congruence for
coefficients an with n coprime to the level of f .)

5. Let L5 be the part of L4 coprime to the residue characteristic of any
prime of congruence between f and an Eisenstein series. (This elimi-
nates residue characteristics of reducible representations.)

6. Let B be the part of L5 coprime to the residue characteristic of any
prime of congruence between f and any one of its Galois conjugates.

Proposition 4.8 and Lemma 7.1 imply that if ordp(B) > 0 then, according to
the Bloch–Kato conjecture, ordp(#X) = ordp(B) > 0.

We computed B for every newform in S. There are many examples in
which L3 is large, but B is not, and this is because of Tamagawa factors. For
example, 39k4C has L3 = 19, but B = 1 because of a 19-congruence with
a form of level 13; in this case we must have 19 | c3(2), where c3(2) is as in
Section 4. See Section 7.4 for more details. Also note that in every example B
is a perfect square, which, away from congruence primes, is as predicted by
the existence of Flach’s generalised Cassels–Tate pairing [Fl1]. (Note that if
A[λ] is irreducible then the lattice Tλ is at worst a scalar multiple of its dual,
so the pairing shows that the order of the λ-part of X, if finite, is a square.)
That our computed value of B should be a square is not a priori obvious.

For simplicity, we discard residue characteristics instead of primes of rings
of integers, so our definition of B is overly conservative. For example, 5 occurs
in row 2 of Table 1 but not in Table 2, because 159k4E is Eisenstein at
some prime above 5, but the prime of congruences of characteristic 5 between
159k4B and 159k4E is not Eisenstein.

The newforms for which B > 1 are given in Table 2 on pp. 112–115. The
second column of the table records the degree of the field generated by the
Fourier coefficients of f . The third contains B. Let W be the intersection
of the span of all conjugates of f with Sk(Γ0(N),Z) and W⊥ the Petersson
orthogonal complement of W in Sk(Γ0(N),Z). The fourth column contains
the odd prime divisors of #(Sk(Γ0(N),Z)/(W +W⊥)), which are exactly the
possible primes of congruence between f and nonconjugate cusp forms of the
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same weight and level. We place a ∗ next to the four entries of Table 2 that
also occur in Table 1.

7.4 Examples in which hypotheses fail

We have some other examples where forms of different levels are congruent
(for Fourier coefficients of index coprime to the levels). However, Remark 5.2
does not apply, so that one of the forms could have an odd functional equation,
and the other could have an even functional equation. For instance, we have a
19-congruence between the newforms g = 13k4A and f = 39k4C of Fourier
coefficients of index coprime to 39. Here L(f, 2) �= 0, while L(g, 2) = 0 since
L(g, s) has odd functional equation. Here f fails the condition about not
being congruent to a form of lower level, so in Lemma 4.4 it is possible that
ordq(c3(2)) > 0. In fact this does happen. Because V ′

q (attached to g of level
13) is unramified at p = 3, H0(Ip, A[q]) (the same as H0(Ip, A

′[q])) is two-
dimensional. As in (2) of the proof of Theorem 6.1, one of the eigenvalues
of Frob−1

p acting on this two-dimensional space is α = −wpp
(k/2)−1, where

Wpf = wpf . The other must be β = −wpp
k/2, so that αβ = pk−1. Twisting

by k/2, we see that Frob−1
p acts as −wp on the quotient of H

0(Ip, A[q](k/2))
by the image of H0(Ip, Vq(k/2)). Hence ordq(cp(k/2)) > 0 when wp = −1,
which is the case in our example here with p = 3. Likewise H0(Qp, A[q](k/2))
is nontrivial when wp = −1, so (2) of the proof of Theorem 6.1 does not
work. This is just as well, since had it worked we would have expected
ordq(L(f, k/2)/vol∞) ≥ 3, which computation shows not to be the case.

In the following example, the divisibility between the levels is the other
way round. There is a 7-congruence between g = 122k6A and f = 61k6B,
both L-functions have even functional equation, and L(g, 3) = 0. In the proof
of Theorem 6.1, there is a problem with the local condition at p = 2. The
map from H1(I2, A

′[q](3)) to H1(I2, A
′
q(3)) is not necessarily injective, but

its kernel is at most one dimensional, so we still get the q-torsion subgroup
of H1

f (Q, Aq(2)) having Fq-rank at least 1 (assuming r ≥ 2), and thus get
elements of X for 61k6B (assuming all along the strong Beilinson–Bloch
conjecture). In particular, these elements of X are invisible at level 61.
When the levels are different we are no longer able to apply [FJ], Theorem 2.1.
However, we still have the congruences of integral modular symbols required
to make the proof of Proposition 5.1 go through. Indeed, as noted above,
the congruences of modular forms were found by producing congruences of
modular symbols. Despite these congruences of modular symbols, Remark 5.2
does not apply, since there is no reason to suppose that wN = wN ′ , where N
and N ′ are the distinct levels.

Finally, there are two examples where we have a form g with even func-
tional equation such that L(g, k/2) = 0, and a congruent form f which has
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odd functional equation; these are a 23-congruence between g = 453k4A and
f = 151k4A, and a 43-congruence between g = 681k4A and f = 227k4A.
If ords=2 L(f, s) = 1, it ought to be the case that dim(H1

f (Q, Vq(2))) = 1. If
we assume this is so, and similarly that r = ords=2(L(g, s)) ≥ 2, then unfor-
tunately the appropriate modification of Theorem 6.1 (with strong Beilinson–
Bloch conjecture) does not necessarily provide us with nontrivial q-torsion in
X. It only tells us that the q-torsion subgroup of H1

f (Q, Aq(2)) has Fq-rank
at least 1. It could all be in the image of H1

f (Q, Vq(2)). X appears in the
conjectural formula for the first derivative of the complex L function, evalu-
ated at s = k/2, but in combination with a regulator that we have no way of
calculating.

Let Lq(f, s) and Lq(g, s) be the q-adic L functions associated with f and
g by the construction of Mazur, Tate and Teitelbaum [MTT], each divided
by a suitable canonical period. We may show that q | L′

q(f, k/2), though it
is not quite clear what to make of this. This divisibility may be proved as
follows. The measures dµf,α and (a q-adic unit times) dµg,α′ in [MTT] (again,
suitably normalised) are congruent mod q, as a result of the congruence be-
tween the modular symbols out of which they are constructed. Integrating
an appropriate function against these measures, we find that L′

q(f, k/2) is
congruent mod q to L′

q(g, k/2). It remains to observe that L′
q(g, k/2) = 0,

since L(g, k/2) = 0 forces Lq(g, k/2) = 0, but we are in a case where the signs
in the functional equations of L(g, s) and Lq(g, s) are the same, positive in
this instance. (According to the proposition in [MTT], Section 18, the signs
differ precisely when Lq(g, s) has a “trivial zero” at s = k/2.)

We also found some examples for which the conditions of Theorem 6.1
were not met. For example, we have a 7-congruence between 639k4B and
639k4H, but w71 = −1, so that 71 ≡ −w71 (mod 7). There is a similar prob-
lem with a 7-congruence between 260k6A and 260k6E — here w13 = 1 so
that 13 ≡ −w13 (mod 7). According to Propositions 5.1 and 4.8, Bloch–Kato
still predicts that the q-part of X is nontrivial in these examples. Finally,
there is a 5-congruence between 116k6A and 116k6D, but here the prime 5
is less than the weight 6 so Propositions 5.1 and 4.8 (and even Lemma 7.1)
do not apply.
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f deg f B (bound for X) all odd congruence primes

127k4C∗ 17 432 43, 127

159k4E∗ 8 232 3, 5, 11, 23, 53, 13605689

263k4B 39 412 263

269k4C 39 232 269

271k4B 39 292 271

281k4B 40 292 281

295k4C 16 72 3, 5, 11, 59, 101, 659, 70791023

299k4C 20 292 13, 23, 103, 20063, 21961

321k4C 16 132 3, 5, 107, 157, 12782373452377

95k6D∗ 9 312 ·592 3, 5, 17, 19, 31, 59, 113, 26701

101k6B 24 172 101

103k6B 24 232 103

111k6C 9 112 3, 37, 2796169609

122k6D∗ 6 732 3, 5, 61, 73, 1303196179

153k6G 5 72 3, 17, 61, 227

157k6B 34 2512 157

167k6B 40 412 167

172k6B 9 72 3, 11, 43, 787

173k6B 39 712 173

181k6B 40 1072 181

191k6B 46 850912 191

193k6B 41 312 193

199k6B 46 2003292 199
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f deg f B (bound for X) all odd congruence primes

47k8B 16 192 47

59k8B 20 292 59

67k8B 20 292 67

71k8B 24 3792 71

73k8B 22 1972 73

74k8C 6 232 37, 127, 821, 8327168869

79k8B 25 3072 79

83k8B 27 10192 83

87k8C 9 112 3, 5, 7, 29, 31, 59, 947, 22877,
3549902897

89k8B 29 444912 89

97k8B 29 112 ·2772 97

101k8B 33 192 ·115032 101

103k8B 32 753672 103

107k8B 34 172 ·4912 107

109k8B 33 232 ·2292 109

111k8C 12 1272 3, 7, 11, 13, 17, 23, 37, 6451,
18583, 51162187

113k8B 35 672 ·6412 113

115k8B 12 372 3, 5, 19, 23, 572437,
5168196102449

117k8I 8 192 3, 13, 181

118k8C 8 372 5, 13, 17, 59, 163,
3923085859759909

119k8C 16 12832 3, 7, 13, 17, 109, 883, 5324191,
91528147213

121k8F 6 712 3, 11, 17, 41

121k8G 12 132 3, 11

121k8H 12 192 5, 11

125k8D 16 1792 5

127k8B 39 592 127
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f deg f B (bound for X) all odd congruence primes

128k8F 4 112 1

131k8B 43 2412 · 8178382012 131

134k8C 11 612 11, 17, 41, 67, 71, 421,
2356138931854759

137k8B 42 712 · 7490932 137

139k8B 43 472 · 892 · 10212 139

141k8C 14 132 3, 5, 7, 47, 4639, 43831013,
4047347102598757

142k8B 10 112 3, 53, 71, 56377,
1965431024315921873

143k8C 19 3072 3, 11, 13, 89, 199, 409, 178397,
639259, 17440535 97287

143k8D 21 1092 3, 7, 11, 13, 61, 79, 103, 173,
241,
769, 36583

145k8C 17 295872 5, 11, 29, 107, 251623, 393577,
518737, 9837145 699

146k8C 12 36912 11, 73, 269, 503, 1673540153,
11374452082219

148k8B 11 192 3, 37

149k8B 47 114 · 409967892 149

43k10B 17 4492 43

47k10B 20 22132 47

53k10B 21 6732 53

55k10D 9 712 3, 5, 11, 251, 317, 61339,
19869191

59k10B 25 372 59

62k10E 7 232 3, 31, 101, 523, 617, 41192083

64k10K 2 192 3

67k10B 26 1912 · 6172 67

68k10B 7 832 3, 7, 17, 8311

71k10B 30 11032 71
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f deg f B (bound for X) all odd congruence primes

19k12B 9 672 5, 17, 19, 31, 571

31k12B 15 672 · 712 31, 13488901

35k12C 6 172 5, 7, 23, 29, 107, 8609, 1307051

39k12C 6 732 3, 13, 1491079, 3719832979693

41k12B 20 543472 7, 41, 3271, 6277

43k12B 20 2129692 43, 1669, 483167

47k12B 23 244692 17, 47, 59, 2789

49k12H 12 2712 7

Table 2: Conjecturally nontrivial X (mostly invisible)
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[FL] J.-M. Fontaine, G. Lafaille, Construction de représentations p-
adiques, Ann. Sci. E.N.S. 15 (1982) 547–608
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A counterexample to a conjecture of Selmer

Tom Fisher

Abstract

We present a counterexample to a conjecture cited by Cassels [CaI]
and attributed to Selmer. The issues raised have been given new sig-
nificance by the recent work of Heath-Brown [HB] and Swinnerton-
Dyer [SwD] on the arithmetic of diagonal cubic surfaces.

1 Introduction

Let E be an elliptic curve over a number field k, with complex multiplication
by Z[ω] where ω is a primitive cube root of unity. Let K = k(ω), so that
[K : k] = 1 or 2 according as ω ∈ k or ω �∈ k. In his work on cubic surfaces,
Heath-Brown [HB] makes implicit use of the following statement.

Theorem 1.1 If [K : k] = 2 and the Tate–Shafarevich group X(E/k) is
finite, then the order of X(E/K)[

√−3] is a perfect square.

We explain how this result follows from the work of Cassels [CaIV], and
give an example to show that the condition [K : k] = 2 is necessary.

For the application to cubic surfaces, we only need a special case of the
theorem, namely that X(E/K)[

√−3] cannot have order 3. This result, still
conditional on the finiteness of the Tate–Shafarevich group, has already ap-
peared in [BF] and [SwD]. In fact Swinnerton-Dyer [SwD] vastly generalises
Heath-Brown’s results. In the case [K : k] = 2 he proves the Hasse principle
for diagonal cubic 3-folds over k, conditional only on the finiteness of the
Tate–Shafarevich group for elliptic curves over k. The condition [K : k] = 2
is unnatural, and conjecturally should not appear. However, the counter-
example presented in this article suggests that, if we are to follow the methods
of Heath-Brown and Swinnerton-Dyer, then this condition on k is unavoid-
able.

In §2 we recall how it is possible to pass between the fields k and K.
Then in §3 we give a modern treatment of the descent by 3-isogeny studied
by Selmer [S1] and Cassels [CaI]. In §§4–5 we recall how the conjectures of

119
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Selmer may be deduced from properties of the Cassels–Tate pairing. This
culminates in a proof of Theorem 1.1. Finally in §6 we present our new
example.

2 Decomposition into Galois eigenspaces

Let E be an elliptic curve over k with complex multiplication by Z[ω]. The
isogeny [

√−3] : E → E is defined over K = k(ω). But the kernel E[
√−3] is

defined over k. It follows that there is a 3-isogeny φ : E → Ẽ defined over k
with E[

√−3] = E[φ]. Here Ẽ is a second elliptic curve defined over k, which

we immediately recognise as the −3-twist of E. The dual isogeny φ̂ : Ẽ → E
satisfies φ ◦ φ̂ = [3] and φ̂ ◦ φ = [3]. Our notation for the Selmer groups and
Tate–Shafarevich groups follows Silverman [Sil, Chapter X].

Lemma 2.1 If [K : k] = 2 then the exact sequence

0−→E(K)/
√−3E(K)−→S(

√−3)(E/K)−→X(E/K)[
√−3]−→ 0 (1)

is the direct sum of the exact sequences

0−→ Ẽ(k)/φE(k)−→S(φ)(E/k)−→X(E/k)[φ]−→ 0 (2)

and

0−→E(k)/φ̂Ẽ(k)−→S(φ̂)(Ẽ/k)−→X(Ẽ/k)[φ̂]−→ 0. (3)

Proof Since arguments of this type have already appeared in [BF], [N],
[SwD] and presumably countless other places in the literature, we will not
dwell on the proof. Suffice it to say that we decompose (1) into eigenspaces for
the action of Gal(K/k), and then use the inflation-restriction exact sequence
to identify these eigenspaces as (2) and (3). The observation that [K : k] = 2
is prime to deg φ = 3 is crucial throughout the proof. �

Remark 2.2 Each term of the exact sequence (1) is a Z/3Z-vector space
with an action of Gal(K/k). Thus each term is a direct sum of the Galois

modules Z/3Z and µ3. If we replace E by Ẽ in (1) we obtain the same exact
sequence of abelian groups, but as Galois modules the summands Z/3Z and
µ3 are interchanged.
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3 Computation of Selmer groups

Let k be a number field. Let T [a0, a1, a2] be the diagonal plane cubic

a0x
3
0 + a1x

3
1 + a2x

3
2 = 0 (4)

where a0, a1, a2 ∈ k∗/k∗3. Let EA be the elliptic curve T [A, 1, 1] with identity
element 0 = (0 : 1 : −1). It is well known [St] that EA has Weierstrass
equation y2 = x3 − 432A2. An alternative proof of the following lemma may
be found in [CaL, §18].
Lemma 3.1 The diagonal plane cubic T [a0, a1, a2] is a smooth curve of genus
1 with Jacobian EA where A = a0a1a2.

Proof There is an isomorphism T [a0, a1, a2] � EA defined over k( 3
√
α) where

α = a1a
2
2, given by

ψ : (x0 : x1 : x2) 	→ (a2x0 : α2/3x1 : α1/3a2x2).

The cocycle σ(ψ)ψ−1 takes values in the subgroup µ3 ⊂ Aut(EA) generated
by xi 	→ ωixi. But since µ3 acts on EA without fixed points, this action
belongs to the translation subgroup of Aut(EA). It follows that T [a0, a1, a2]
is a torsor under EA and that EA is the Jacobian of T [a0, a1, a2]. �

Temporarily working over K = k(ω) we note that EA has complex mul-
tiplication by Z[ω] where ω : (x0 : x1 : x2) 	→ (ωx0 : x1 : x2) and that
EA[1 − ω] = EA[

√−3] is generated by (0 : ω : −ω2). So as in §2 there is a
map φ which gives an exact sequence of Galois modules

0−→µ3 −→EA
φ−→ ẼA −→ 0

where ẼA is the −3-twist of EA. Taking Galois cohomology we obtain an
exact sequence

0−→ ẼA(k)/φEA(k)
δ−→ k∗/k∗3 −→H1(k,EA)[φ]−→ 0. (5)

The group H1(k,EA) parametrises the torsors under EA. We write CA,α for
the torsor under EA described by α ∈ k∗/k∗3. The proof of Lemma 3.1 shows
that

T [a0, a1, a2] � CA,α for A =
∏

aν and α =
∏

aν
ν (6)

where the products are over ν ∈ Z/3Z. Since T [a0, a1, a2] � T [a1, a2, a0] it

is clear that A ∈ im δ. If ẼA has Weierstrass equation Y 2Z = −4AX3 + Z3

then the 3-covering map T [a0, a1, a2] → ẼA is given by

(x0 : x1 : x2) 	→ (x0x1x2 : a1x
3
1 − a2x

3
2 : a0x

3
0).
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The Selmer group attached to φ is

S(φ)(EA/k) =
{
α ∈ k∗/k∗3 ∣∣ CA,α(kp) �= ∅ for all primes p

}
.

Since deg φ = 3 is odd we have ignored the infinite places. We write δp for
the local connecting map obtained when we apply (5) to the local field kp.
Then the condition CA,α(kp) �= ∅ may also be written α ∈ im δp. Using (6) to
give equations for CA,α it is easy to prove

Lemma 3.2 Let k be a number field, and p a prime not dividing 3. Let op

denote the ring of integers of kp. Then

im δp =

{
o∗p/o

∗3
p if ordp(A) ≡ 0 (mod 3)

〈A〉 if ordp(A) �≡ 0 (mod 3).

If p divides 3 the situation is more complicated, although we still have

im δp ⊂ o∗p/o
∗3
p if ordp(A) ≡ 0 (mod 3). (7)

If ω ∈ kp Tate local duality tells us that im δp is a maximal isotropic
subspace with respect to the Hilbert norm residue symbol

k∗
p/k

∗3
p × k∗

p/k
∗3
p → µ3. (8)

The next lemma treats the case k = Q(ω). This field has ring of integers
Z[ω] and class number 1. The unique prime above 3 is π = ω − ω2.

Lemma 3.3 Let A ∈ Z[ω] be nonzero and cube-free. Then

im δπ =


〈A, (1 + A)/(1 − A) 〉 if ordπ(A) �= 0

〈A, 1 − π3 〉 if ordπ(A) = 0 and A �≡ ±1 (π3)

〈ω(1 + 3a), 1 − π3 〉 if A = ±(1 + aπ3) for some a ∈ Z[ω].

Proof We recall [CF, Exercise 2.13] that k∗
π/k

∗3
π has basis π, ω, 1−π2, 1−π3

and that these elements define a filtration compatible with the pairing (8).
By Tate local duality it follows that im δπ has order 9. So to prove the lemma
it suffices to prove the inclusions ⊃. As always A ∈ im δπ, whereas (7) and
Tate local duality tell us that 1 − π3 ∈ im δπ. There is at most one more
element to find.

(i) Suppose ordπ(A) �= 0. If α satisfies α − α−1 = A then T [A,α, α−1] is
soluble. Splitting into the cases ordπ(A) = 1 or 2 we find

4A/(1 − A2) ≡ A (mod π4).

Thus α = (1 + A)/(1 − A) provides a solution mod π4.
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(ii) Suppose A = 1 + aπ3 for some a ∈ Z[ω]. If α satisfies A + α + α−1 = 0
then T [A,α, α−1] is soluble. In view of the identity

(1 + π3a) + ω(1 + 3a) + ω2(1 − 3a) = 0

we see that α = ω(1 + 3a) provides a solution mod π4. �

4 Selmer’s conjectures

In this section we take k = Q, so that K = Q(ω). We consider the elliptic

curves EA and ẼA over Q where A ≥ 2 is a cube-free integer.

Lemma 4.1 If A ≥ 3 then the torsion subgroups are

EA(Q)tors = 0 and ẼA(Q)tors � Z/3Z.

Proof See [St, §6] or [K, Chapter 1, Problem 7]. �
Lemma 2.1 gives a decomposition into Gal(K/Q)-eigenspaces

S(
√−3)(EA/K) � S(φ)(EA/Q) ⊕ S(φ̂)(ẼA/Q). (9)

The following examples were found by Selmer [S1], [S2].

Example 4.2 Let A = 60. Lemmas 3.2 and 3.3 tell us that

S(
√−3)(E60/K) � 〈2, 3, 5〉 ⊂ K∗/K∗3.

Then (9) gives S(φ)(E60/Q) � (Z/3Z)3 and S(φ̂)(Ẽ60/Q) = 0. But a 2-descent
[CaL, §15], [Cr] shows that E60(Q) has rank 0. We deduce

X(E60/Q)[3] � (Z/3Z)2.

Example 4.3 Let A = 473. Lemmas 3.2 and 3.3 tell us that

S(
√−3)(E473/K) � 〈11, 1 − 6ω, 1 − 6ω2〉 ⊂ K∗/K∗3.

Then (9) gives S(φ)(E473/Q) � (Z/3Z)2 and S(φ̂)(Ẽ473/Q) � Z/3Z. But a
2-descent [S2], [Cr] shows that E473(Q) has rank 0. We deduce

X(E473/Q)[φ] � Z/3Z and X(Ẽ473/Q)[φ̂] � Z/3Z.

Remark 4.4 According to the formulae and tables of Stephens [St], the
above examples have L(EA, 1) �= 0. So the claims rankEA(Q) = 0 could
equally be deduced from the work of Coates and Wiles [CW].
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Example 4.2 tells us that each of the curves

T [3, 4, 5] : 3x3
0 + 4x3

1 + 5x3
2 = 0

T [1, 3, 20] : x3
0 + 3x3

1 + 20x3
2 = 0

T [1, 4, 15] : x3
0 + 4x3

1 + 15x3
2 = 0

T [1, 5, 12] : x3
0 + 5x3

1 + 12x3
2 = 0

(10)

is a counterexample to the Hasse Principle for smooth curves of genus 1
defined over Q. Selmer proves this without the need for a 2-descent. Instead
he shows that the equations (10) are insoluble overQ by writing them as norm
equations. As Cassels explains [CaI, §11] this is equivalent to performing a
second descent, i.e. computing the middle group in

ẼA(Q)/φEA(Q) ⊂ φ̂S(3)(ẼA/Q) ⊂ S(φ)(EA/Q). (11)

In fact Selmer’s calculations suffice to show that X(E60/Q)(3) � (Z/3Z)2.
In other words X(E60/Q) does not contain an element of order 9. More
recent work of Rubin [M] improves this to X(E60/Q) � (Z/3Z)2.

Selmer also gave practical methods for computing the two right hand
groups in

EA(Q)/φ̂ẼA(Q) ⊂ φS(3)(EA/Q) ⊂ S(φ̂)(ẼA/Q). (12)

Following Stephens [St] we write g1 + 1, λ′
1 + 1, λ1 + 1 for the dimensions of

the Z/3Z-vector spaces (11) and g2, λ
′
2, λ2 for the dimensions of the Z/3Z-

vector spaces (12). Trivially we have 0 ≤ g1 ≤ λ′
1 ≤ λ1, 0 ≤ g2 ≤ λ′

2 ≤ λ2

and rankEA(Q) = g1 + g2. Based on a large amount of numerical evidence,
Selmer [S3] made the following

Conjecture 4.5 Let A ≥ 2 be a cube-free integer. Let EA be the elliptic
curve x3 + y3 = Az3 defined over Q. Then

Weak form The second descent excludes an even number of generators, i.e.
λ1 ≡ λ′

1 (mod 2) and λ2 ≡ λ′
2 (mod 2).

Strong form The number of generators of infinite order for EA(Q) is an
even number less than what is indicated by the first descent, i.e.

λ1 + λ2 ≡ g1 + g2 (mod 2).

For A = 473, Selmer found λ1 = λ′
1 = λ2 = λ′

2 = 1 yet g1 = g2 = 0. He

was thus aware of the need to combine the contributions from φ and φ̂ in the
strong form of his conjecture.
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Remark 4.6 In Heath-Brown’s notation [HB] we have

r(A) = rankEA(Q) = g1 + g2 and s(A) = λ1 + λ2.

By (9) the order of S(
√−3)(EA/K) is 3s(A)+1 and in fact it is this relation

that Heath-Brown uses to define s(A). Naturally he writes the strong form
of Selmer’s conjecture as r(A) ≡ s(A) (mod 2).

Now let k be any number field. Conjecture 4.5 is equivalent to the case
k = Q of the following

Conjecture 4.7 Suppose that A ∈ k∗ is not a perfect cube and let EA be the
elliptic curve x3 + y3 = Az3 defined over k. Then

Weak form The index of the subgroup φ̂(X(ẼA/k)[3]) ⊂ X(EA/k)[φ] is a

perfect square. The same is true for φ(X(EA/k)[3]) ⊂ X(ẼA/k)[φ̂].

Strong form The order of X(EA/k)[φ] times that of X(ẼA/k)[φ̂] is a per-
fect square.

In the next section we recall how Conjecture 4.7 follows from the work of
Cassels, the strong form being conditional on the finiteness of X(EA/k).

5 The Cassels–Tate pairing

Let E be an elliptic curve over a number field k. For φ : E → E ′ an isogeny of
elliptic curves over k we shall write φ̂ : E ′ → E for the dual isogeny. Cassels
[CaIV] defines an alternating bilinear pairing

〈 , 〉 : X(E/k) × X(E/k) → Q/Z (13)

with the following nondegeneracy property.

Theorem 5.1 Let φ : E → E ′ be an isogeny of elliptic curves over k. Then
x ∈ X(E/k) belongs to the image of φ̂ : X(E ′/k) → X(E/k) if and only if
〈x, y〉 = 0 for all y ∈ X(E/k)[φ].

Proof This was proved by Cassels [CaIV] in the case φ = [m] for m a
rational integer. The general case follows by his methods and is explained in
[F]. �

The pairing was later generalised to abelian varieties by Tate, and so is
known as the Cassels–Tate pairing. The most striking applications in the
case of elliptic curves come from the following easy lemma.
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Lemma 5.2 If a finite abelian group admits a nondegenerate alternating bi-
linear pairing, then its order must be a perfect square.

The weak form of Conjecture 4.7 is a special case of

Corollary 5.3 Let φ : E → E ′ be an m-isogeny of elliptic curves over k.
Then the subgroup φ̂(X(E ′/k)[m]) ⊂ X(E/k)[φ] has index a perfect square.

Proof According to Theorem 5.1 the pairing (13) restricted to X(E/k)[φ]

has kernel φ̂(X(E ′/k)[m]). We are done by Lemma 5.2. �
Let us assume that X(E/k) is finite. So by Theorem 5.1 and Lemma 5.2

the order of X(E/k) is a perfect square. If φ : E → E ′ is an isogeny of elliptic
curves over k then the same conclusions will hold for E ′. We define

〈 , 〉φ : X(E/k) × X(E ′/k) → Q/Z ; (x, y) 	→ 〈φx, y〉 = 〈x, φ̂y〉 (14)

where the equality on the right is [CaVIII, Theorem 1.2]. The strong form of
Conjecture 4.7 is a special case of

Corollary 5.4 Let φ : E → E ′ be an isogeny of elliptic curves over k. If
X(E/k) is finite then the order of X(E/k)[φ] times that of X(E ′/k)[φ̂] is
a perfect square.

Proof According to Theorem 5.1 the left and right kernels of 〈 , 〉φ are

X(E/k)[φ] and X(E ′/k)[φ̂]. We obtain a nondegenerate pairing

X(E/k)/X(E/k)[φ] × X(E ′/k)/X(E ′/k)[φ̂] → Q/Z.

We deduce that these quotients have the same order and are done since
X(E/k) and X(E ′/k) each have order a perfect square. �

Another well known consequence is

Corollary 5.5 Let E be an elliptic curve over k whose Tate–Shafarevich
group is finite, and let m be a rational integer. Then the order of X(E/k)[m]
is a perfect square.

Proof According to Theorem 5.1 the kernel of 〈 , 〉m is X(E/k)[m]. We
obtain a nondegenerate alternating pairing

X(E/k)/X(E/k)[m] × X(E/k)/X(E/k)[m] → Q/Z.

We apply Lemma 5.2 to this pairing and are done since X(E/k) has order a
perfect square. �

Remark 5.6 We could equally deduce Corollary 5.4 from Corollaries 5.3
and 5.5.
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Proof of Theorem 1.1 Let E be an elliptic curve over k with complex
multiplication by Z[ω] and suppose that [K : k] = 2. Lemma 2.1 tells us that

X(E/K)[
√−3] � X(E/k)[φ] ⊕ X(Ẽ/k)[φ̂].

Assuming X(E/k) is finite, Corollary 5.4 shows that the group on the right
has order a perfect square. So the group on the left has order a perfect square,
and this is precisely the statement of Theorem 1.1. �

In the first of his celebrated series of papers, Cassels [CaI] defines a pairing
S(

√−3)(EA/K) × S(
√−3)(EA/K) → µ3. It is of course a special case of the

pairing (13). He uses it to prove the weak form of Conjecture 4.7 in the case
[K : k] = 1. However in the introduction to the same paper he misquotes the
strong form of Selmer’s conjecture. The statement he gives is equivalent to

• If [K : k] = 1 then the order of X(EA/K)[
√−3] is a perfect square.

It is this statement to which we have found a counterexample. It is possible
that Cassels was misled by earlier work of Selmer at a time when he did not
appreciate the need to combine the contributions from φ and φ̂ in the strong
form of his conjecture.

Remark 5.7 It is tempting to try and prove Theorem 1.1 also in the case
[K : k] = 1 by imitating the proof of Corollary 5.5. However the isogeny
[
√−3] has dual [−√−3] and this extra sign means that the pairing 〈 , 〉√−3

is symmetric rather than alternating. Lemma 5.2 does not apply.

6 A new example

In this section we take K = Q(ω). Let EA be the elliptic curve x3+y3 = Az3.
We aim to find A ∈ K such that the order of X(EA/K)[

√−3] is not a perfect
square. As in Example 4.3 our method is to compare a 3-descent with a 2-
descent. The form of the curves EA makes the 3-descent easy. We use the
results of §3 to compute the Selmer group S(

√−3)(EA/K). For the 2-descent
we would like to use John Cremona’s program mwrank [Cr]. But mwrank is
written specifically for elliptic curves over Q, whereas Theorem 1.1 tells us
that there are no examples of the required form with A2 ∈ Q. Fortunately
we were able to use a program of Denis Simon [Si1], [Si2], written using the
computer algebra package pari [BBBCO], that extends Cremona’s work on
2-descents to general number fields (in practice of degrees 1 up to 5).

We consider all cube-free A ∈ Z[ω] with A2 �∈ Q and Norm(A) ≤ 150. We
ignore repeats of the form ±σ(A) for σ ∈ Gal(K/Q). In all 123 cases a calcu-
lation based on Lemmas 3.2 and 3.3 shows that S(

√−3)(EA/K) is isomorphic
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to either Z/3Z or (Z/3Z)2. In the 98 cases where S(
√−3)(EA/K) � Z/3Z

it follows immediately that rankEA(K) = 0. In the remaining 25 cases we
run Simon’s program. For 20 of these curves the program exhibits a point of
infinite order. Since EA(K) has the structure of Z[ω]-module, we are able to
deduce that rankEA(K) = 2. The remaining 5 cases are

A = ±(3 + 7ω), ±(9 + ω), ±(12 + 5ω), ±(6 + 13ω), ±(13 + 7ω)

and their Galois conjugates. In each of these cases Simon’s program reports
that rankEA(K) = 0. Reducing modulo some small primes we find EA(K) �
Z/3Z. Thus

X(EA/K)[
√−3] � Z/3Z.

For the remainder of this article we restrict attention to the first of these
examples, namely A = 3 + 7ω, and give further details of the descent calcu-
lations involved. In particular we establish the counterexample of the title in
a way that is independent of Simon’s program.

We begin by checking the above computation of S(
√−3)(EA/K) for A =

3 + 7ω. Since (A) is prime, Lemma 3.2 tells us that

S(
√−3)(EA/K) ⊂ 〈ω, 3 + 7ω〉. (15)

We check the local conditions at the primes (π) and (A) above 3 and 37
respectively.

• Since 37 ≡ 1 (mod 9) we know that ω is a cube locally at (A).

• Lemma 3.3 gives im δπ = 〈A, 1− π3〉 ⊂ K∗
π/K

∗3
π . Since A = ω− π3 it is

clear that ω belongs to this subgroup.

It follows that equality holds in (15) as required.
Given the provisional nature of Simon’s program we have taken the liberty

of writing out the 2-descent for A = 3+7ω in the style of Cassels [CaL, p. 72–
73]. The curve EA has Weierstrass form

Y 2 = X3 − 2433(3 + 7ω)2. (16)

The 2-descent takes place over the field L = K(δ) where δ3 = 4(3 + 7ω).
According to pari [BBBCO]1, L has class number h = 3, and fundamental
units

η1 = (−7 − 3ω) + (−3 − 2ω)δ + (−2 + ω)δ2/2
η2 = (−7 − 3ω) + (2 − ω)δ + (3 + 2ω)δ2/2.

1These calculations were performed using Version 2.0.20 (beta)



Tom Fisher 129

Furthermore pari is able to certify these results, independent of any conjec-
ture. We have chosen η1 and η2 to be K-conjugates. They have minimal
polynomial

x3 + (21 + 9ω)x2 + (102 − 165ω)x− 1.

If (X, Y ) = (r/t2, s/t3) is a solution of (16), with fractions in lowest terms,
then a common prime divisor of any two of

r − 3δ2t2, r − 3ωδ2t2, r − 3ω2δ2t2

must divide 2(1 − ω)(3 + 7ω). Since 2, (1 − ω), (3 + 7ω) ramify completely,
r − 3δ2t2 must be a perfect ideal square. Since h is odd it follows that
S(2)(E/K) is a subgroup of 〈−1, η1, η2〉 ⊂ L∗/L∗2. We claim that S(2)(E/K)
is trivial. By considering norms from L to K, it suffices to show that the
equation

r − 3δ2t2 = ηα2 with η = η1, η2 or 1/(η1η2)

is insoluble for r, t ∈ K and α ∈ L. The action of Gal(L/K) shows that
we need only consider the case η = η1. Put α = u + vδ + wδ2. Equating
coefficients of powers of δ we obtain

0 = (−3 − 2ω)u2 + (−14 − 6ω)uv + (−26 − 36ω)v2

+ (−52 − 72ω)uw + (40 − 104ω)vw + (−148ω)w2

−3t2 = ((−2 + ω)/2)u2 + (−6 − 4ω)uv + (−7 − 3ω)v2

+ (−14 − 6ω)uw + (−52 − 72ω)vw + (20 − 52ω)w2.

On putting

u = (−8 + 6ω)e + (−6 − 34ω)f + (−20 + 15ω)g
v = (−4 − 4ω)e + (12 + 4ω)f + (−10 − 11ω)g
w = (1 − ω)e + (1 + 4ω)f + (2 − 2ω)g

in the first equation, it becomes

0 = (3 + 7ω)g2 − 16ef.

Hence there are m,n such that

e : f : g = m2 : (3 + 7ω)n2 : 4mn.

On substituting into the second equation, we get

−3t2 = 2(−1 − 4ω)m4 + 8(−4 + 3ω)m3n + 4(21 + 12ω)m2n2

+ 8(4 − 3ω)mn3 + 2(−33 − 40ω)n4.

But this is impossible over the 2-adic completion of K. Hence S(2)(EA/K) is
trivial and rankEA(K) = 0 as claimed.
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Linear relations amongst sums of two squares

D.R. Heath-Brown

1 Introduction

It is well known that there are infinitely many sets of three distinct primes
in arithmetic progression. This may be proved by an easy adaptation of
Vinogradov’s treatment of the ternary Goldbach problem. More generally
for, any nonzero integers A,B,C, not all of the same sign, one can show the
existence of infinitely many triples of primes p1, p2, p3 satisfying the linear
relation

Ap1 + Bp2 + Cp3 = 0

subject to the natural condition that A+B+C should be even. Balog [1] has
made important progress on the question of linear relations involving more
than 3 primes, but nonetheless it remains an open problem as to whether
there are infinitely many sets of 4 distinct primes in arithmetic progression.

Many open problems involving primes have potentially easier relatives
involving sums of two squares. Thus one might ask whether or not there are
infinitely many arithmetic progressions of 4 (or more) distinct integers, each
of which is a sum of 2 squares. This is trivial. The numbers

(n− 8)2 + (n− 1)2, (n− 7)2 + (n + 4)2, (n + 7)2 + (n− 4)2

and (n + 8)2 + (n + 1)2

form an arithmetic progression with common difference 12n. In this paper
we shall address the question of the frequency of such progressions. We shall
count the sums of two squares with appropriate multiplicity, so that we shall
consider the sum ∑

x∈R
r(L1(x))r(L2(x))r(L3(x))r(L4(x)), (1.1)

where R is a suitable subset of R2 and the linear forms Li are given by

L1(x) = x1, L2(x) = x1 + x2,
L3(x) = x1 + 2x2, L4(x) = x1 + 3x2,

(1.2)

133
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where x denotes the vector (x1, x2). The corresponding problem for arith-
metic progressions of length 3 is readily handled by the circle method. How-
ever for progressions of length 4 it would appear that one would require a
version of the ‘Kloosterman refinement’ for a double integral∫ 1

0

∫ 1

0

S(α)2S(−2α + β)2S(α− 2β)2S(β)2dαdβ.

Since research to date has failed to provide such a technique we shall use a
rather different approach.

We shall consider a general set of linear forms L1, . . . , L4. However we will
find it convenient to work with linear forms which are suitably normalized.
Moreover we shall require the region R in which we work to satisfy certain
basic conditions. We therefore introduce the following hypothesis.

Normalization Condition 1 (NC1) We assume:

(i) No two of the forms L1, . . . , L4 are proportional.

(ii) We have

R = XR(0) = {x ∈ R2 : X−1x ∈ R(0)},

where R(0) ⊂ R2 is open, bounded and convex, with a piecewise continu-
ously differentiable boundary, and where X is a large positive parameter.

(iii) We have Li(x) > 0 for 1 ≤ i ≤ 4 and for all x ∈ R(0).

(iv) We have

L1(x1, x2) ≡ L2(x1, x2) ≡ L3(x1, x2) ≡ L4(x1, x2) ≡ x1 (mod 4).

We have imposed the final condition in order to simplify our analysis.
While this may seem a little arbitrary, it can be viewed as an analogue of
conditions (ii) and (iii). One can think of (ii) and (iii) as requiring x to
lie in an open neighbourhood of a point y for which each Li(y) is a sum
of two squares. The 2-adic analogue of this real condition on the domain
of summation would involve fixing a 2-adic vector y such that each value
Li(y) is a sum of two 2-adic squares. We would then require x to lie in an
appropriate 2-adic neighbourhood of y. If one imposes such a condition then
it can be shown that there is a suitable change of variables which produces
forms satisfying (iv). However we shall not pursue this here.

In view of condition (iv) we shall find it convenient to write

R4 = {x ∈ R : x1 ≡ 1 (mod 4)},
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so that our problem is to estimate∑
x∈R4

r(L1(x))r(L2(x))r(L3(x))r(L4(x)) = S, (1.3)

say.
From now on, all order constants will be allowed to depend on the set

of forms L1, . . . , L4, and on the region R(0). Our first result is then the
following.

Theorem 1 For a set of forms satisfying NC1, we have

S = 4π4 measR
∏
p≥3

σp + O(X2(logX)−η/2(log logX)15/4) (1.4)

where meas denotes Lebesgue measure, and

η = 1 − 1 + log log 2

log 2
= 0.08607 . . . . (1.5)

Here the product
∏

σp is absolutely convergent and

σp = Ep{1 − χ(p)p−1}4,

where χ is the nonprincipal character modulo 4. The factor Ep is given by

Ep =
∞∑

a,b,c,d=0

χ(p)a+b+c+dρ(pa, pb, pc, pd)−1,

where ρ(d1, d2, d3, d4) is the determinant of the lattice{
x ∈ Z2 : di | Li(x), 1 ≤ i ≤ 4

}
.

The implied constant in (1.4) may depend on the set of forms L1, . . . , L4, and
on the region R(0).

It may be of interest to note that we can evaluate Ep explicitly in many
cases. For 1 ≤ i < j ≤ 4, let ∆ij be the determinant of the pair of forms
Li, Lj, and let ∆ be the product of the various ∆ij. Then if p � ∆, we can
find Ep by a routine, if lengthy, calculation. The result is that

Ep =

{
(1 − 1

p
)−2(1 − 1

p2
)−2(1 + 2

p
+ 6

p2
+ 2

p3
+ 1

p4
) if χ(p) = 1,

(1 − 1
p2

)−1(1 − 1
p4

)−1(1 − 1
p
)4 if χ(p) = −1.

(1.6)

It follows in particular that
∏

σp = 0 if and only if there is some prime p | ∆
with χ(p) = −1 for which Ep = 0.
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It is perhaps worth observing that a notional application of the Hardy–
Littlewood circle method to the system

Li(x1, x2) = u2
i + v2

i , (1 ≤ i ≤ 4),

consisting of 4 equations in 10 variables predicts exactly the main term given
in (1.4). In particular, the singular integral (the density for the real valuation)
is π4 measR, and the 2-adic density

lim
n→∞

#
{
x,u,v (mod 2n) : x1 ≡ 1 (mod 4), Li(x) ≡ u2

i + v2
i (mod 2n)

}
is 4.

To apply Theorem 1 to arithmetic progressions of length 4 we note that if
4 integers in arithmetic progression are each a sum of two squares, then the
common difference must be a multiple of 4. Take

R =
{

(x1, x2) ∈ R2 : x1, x2 > 0, x1 + 12x2 < X
}

and

L1(x) = x1, L2(x) = x1 + 4x2, L3(x) = x1 + 8x2, L4(x) = x1 + 12x2.

Since r(2n) = r(n) we see that∑
a<b<c<d<X

r(a)r(b)r(c)r(d)

=
∑
k

∑
2k(x1,x2)∈R

2�x1

r(L1(x))r(L2(x))r(L3(x))r(L4(x)),

where the sum over a, b, c, d is restricted to arithmetic progressions of length
4. Now if we set

R4(k) =
{

(x1, x2) ∈ Z2 : 2k(x1, x2) ∈ R, x1 ≡ 1 (mod 4)
}
,

we see that∑
a<b<c<d<X

r(a)r(b)r(c)r(d)

=
∑
k

∑
(x1,x2)∈R4(k)

r(L1(x))r(L2(x))r(L3(x))r(L4(x)).

We have sufficient uniformity in Theorem 1 to sum over k. Since measR =
X2/24 and

∑∞
0 4−k = 4/3, this therefore yields the asymptotic formula∑

a<b<c<d<X

r(a)r(b)r(c)r(d) = CX2 + O(X2(logX)−η/2(log logX)15/4),
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Table 1

X S(X) S(X)/CX2

1000 21833216 21.833 . . .

2000 91315200 22.828 . . .

4000 381608960 23.850 . . .

8000 1554144256 24.283 . . .

16000 6308194304 24.641 . . .

32000 25428982272 24.832 . . .

64000 102495412736 25.023 . . .

128000 411816625664 25.135 . . .

where the sum over a, b, c, d is restricted to arithmetic progressions of length
4. Since measR = X2/24, the constant C takes the form

C = 4π4 1

24

4

3

∏
p≥3

Ep{1 − χ(p)p−1}4,

with Ep given by (1.6) for p ≥ 5. Moreover one may compute that

E3 =
27

80
.

Since progressions with d = X clearly contribute O(X1+ε) for any ε > 0
we may summarize our conclusion as follows.

Corollary 1 There is a positive constant C such that∑
a<b<c<d≤X

r(a)r(b)r(c)r(d) = CX2 + O(X2(logX)−η/2(log logX)15/4),

where the sum over a, b, c, d is restricted to arithmetic progressions of length
4. The constant C has the approximate value 25.3039 . . . .

The corollary is illustrated by Table 1, in which

S(X) =
∑

a<b<c<d<X

r(a)r(b)r(c)r(d).

The general problem as formulated above is relevant to a very different
question. The simultaneous equations

V :

{
L1(x1, x2)L2(x1, x2) = x2

3 + x2
4

L3(x1, x2)L4(x1, x2) = x2
5 + x2

6

(1.7)
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will, in general, define a 3-fold in P5. We can estimate the number of rational
points on this variety as x runs over a region R by examining the sum∑

x∈R
r(L1(x)L2(x))r(L3(x)L4(x)).

Varieties of the type (1.7) are of considerable interest, since they may fail
to satisfy the Hasse Principle. Thus they may have no nontrivial rational
points even though they have nonsingular points over R and each of the
p-adic fields Qp. For general pairs of quadratic forms this observation is due
to Iskovskih [6]. For varieties of the particular shape (1.7) the phenomenon
is illustrated by the example

x1x2 = x2
3 + x2

4, (3x1 + 4x2)(8x1 + 11x2) = x2
5 + x2

6, (1.8)

as we proceed to show. There are nonsingular points with x1 = x2 = 1 in
R and in Qp for every prime p other than p = 7 and p = 19. Similarly
for these two exceptional fields there are nonsingular points with x1 = 2
and x2 = 1. We proceed to assume that the equations (1.7) have a nonzero
integral solution x1, . . . , x6. In particular it follows that x1 and x2 cannot
both be zero. For any d ∈ N, if nd2 is a sum of two squares, then n is also a
sum of two squares. Thus we may assume, without loss of generality, that x1

and x2 are coprime. Moreover, we may change the signs if necessary, so as to
suppose that at least one of x1 and x2 is positive. Then, since their product
is a sum of two squares, we see that the other must be nonnegative. It follows
firstly that each of x1 and x2 is a sum of two squares, and secondly that each
of 3x1 + 4x2 and 8x1 + 11x2 is strictly positive. Now∣∣∣∣ 3 4

8 11

∣∣∣∣ = 1,

so that 3x1 + 4x2 and 8x1 + 11x2 must be coprime. Thus both 3x1 + 4x2 and
8x1 + 11x2 will be sums of two squares.

Now if x1 is odd, then x1 = a2 + b2 ≡ 1 (mod 4), so that we must have
3x1 + 4x2 ≡ 3 (mod 4). Thus 3x1 + 4x2 cannot be a sum of two squares.
Similarly if x1 is even, then x2 must be odd, and hence x2 ≡ 1 (mod 4), since
x2 is a sum of two squares. However this means that 8x1 + 11x2 ≡ 3 (mod 4)
so that 8x1 +11x2 cannot be a sum of two squares. This completes the proof.

Even when the variety does possess rational points, it may fail to satisfy
the weak approximation principle. In general, a variety V is said to satisfy
the weak approximation principle if its rational points are dense in the adélic
points. To put this in concrete terms, for our variety (1.7), suppose we

are given a real point (x
(R)
1 , . . . , x

(R)
6 ) and p-adic points (x

(p)
1 , . . . , x

(p)
6 ) for

a finite number of distinct primes p, all lying on the variety (1.7). The weak
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approximation principle then asserts that, for any ε > 0, we can find a rational
point (x1, . . . , x6) on (1.7) satisfying the simultaneous conditions

|xi − x
(R)
i | < ε and |xi − x

(p)
i |p < ε, (1 ≤ i ≤ 6)

for each of the primes p.
However it can happen that V fails to satisfy even the real condition. In

particular the variety may have two real components, on one of which the
rational points are dense, and on the other of which there are no rational
points. This is demonstrated by the example

x1x2 = x2
3 + x2

4, (x1 − x2)(3x1 − 8x2) = x2
5 + x2

6, (1.9)

due to Colliot-Thélène, Coray and Sansuc [2]. There is clearly a rational point
with x1 = 1 and x2 = 2. Moreover the real points belong to two components,
namely those with x2/x1 ≥ 1 and 0 ≤ x2/x1 ≤ 3/8. (We regard points with
x1 = 0 as being of the first type.) The special feature of this example is that
all rational points lie on the first of these components. To prove this we shall
suppose we have an integer point for which 0 ≤ x2/x1 ≤ 3/8, and derive a
contradiction. As with (1.8) we may assume that x1 and x2 are coprime and
nonnegative, so that they must both be sums of two squares. Our assumption
on the size of x2/x1 implies that x1 −x2 and 3x1 − 8x2 are both nonnegative.
Since ∣∣∣∣ 1 −1

3 −8

∣∣∣∣ = −5,

the highest common factor of x1 − x2 and 3x1 − 8x2 must be either 1 or 5.
Thus, since the product of the linear forms x1 − x2 and 3x1 − 8x2 is a sum of
two squares, they must each be a sum of two squares.

Now if x1 is odd, then x1 = a2 + b2 ≡ 1 (mod 4), so that we must have
3x1 − 8x2 ≡ 3 (mod 4). Thus 3x1 − 8x2 cannot be a sum of two squares.
Similarly if 2 ‖x1 we will have x1 ≡ 2 (mod 8) and 3x1 −8x2 ≡ 6 (mod 8), so
that 3x1 − 8x2 is not a sum of two squares. Finally, if 4 | x1, then x2 is odd,
and we will have x2 = c2 + d2 ≡ 1 (mod 4). In this case x1 − x2 ≡ 3 (mod 4)
and x1 − x2 cannot be a sum of two squares. This establishes our claim.

In general there is a heuristic expectation that the number of rational
points on a given variety which lie in a large region should be given by a
product of local densities. This is indeed the type of asymptotic formula that
the Hardy–Littlewood circle method provides, in those cases for which the
error terms can be successfully estimated. However when the rational points
on a variety are not evenly distributed amongst the admissible adélic points,
the entire rationale for this heuristic expectation breaks down. It is thus of
considerable interest to estimate the number of points on such a variety, and
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to compare the result with that predicted from the product of local densities.
This is what we shall do for the varieties (1.7).

We shall introduce the same type of normalization condition as before.
Specifically, we require the following:

Normalization Condition 2 (NC2) We assume:

(i) No two of the forms L1, . . . , L4 are proportional.

(ii) We have

R = XR(0) = {x ∈ R2 : X−1x ∈ R(0)},

where R(0) ⊂ R2 is open, bounded and convex, with a piecewise continu-
ously differentiable boundary, and where X is a large positive parameter.

(iii) We have Li(x) > 0 for 1 ≤ i ≤ 4 and for all x ∈ R(0).

(iv) We have

L1(x1, x2) ≡ L2(x1, x2) ≡ νx1 (mod 4)

and

L3(x1, x2) ≡ L4(x1, x2) ≡ ν ′x1 (mod 4),

for appropriate ν, ν ′ = ±1.

In connection with condition (iii) we note that the equations (1.7) do not
require that Li(x) > 0. However, apart from O(X) points where some Li

vanishes, the solutions may be subdivided into regions in which each Li is
one signed. On each such region we can then replace Li by ±Li as necessary,
so as to ensure that we have points with Li(x) > 0.

As with NC1, condition (iv) is imposed in order to simplify the exposition.
However it may be viewed, as before, as being the result of restricting x to a
suitable 2-adic region.

As an example, we note that the variety defined by (1.8) has a 2-adic point

x
(0)
1 , . . . , x

(0)
6 with x

(0)
1 = x

(0)
2 = 1. The region given by x1−x2 ≡ x

(0)
1 −x

(0)
2 ≡ 0

(mod 4) is a 2-adic neighbourhood of the point x
(0)
1 , . . . , x

(0)
6 . For any point

in this neighbourhood we may write x1 = y1 and x2 = y1 + 4y2 to produce
the equations

y1(y1 + 4y2) = x2
3 + x2

4, (7y1 + 16y2)(19y1 + 44y2) = x2
5 + x2

6. (1.10)

The linear forms now satisfy part (iv) of NC2.
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Similarly for the example (1.9) we have a 2-adic point with x
(0)
1 = 1 and

x
(0)
2 = 2, and we use the 2-adic region

x2 − 2x1 ≡ x
(0)
2 − 2x

(0)
1 ≡ 0 (mod 8).

We thus write x1 = y1 and x2 = 2y1 + 8y2 to produce the equations

y1(y1 + 4y2) = y2
3 + y2

4, (y1 + 8y2)(13y1 + 64y2) = x2
5 + x2

6, (1.11)

all of whose rational points we have shown to satisfy y2/y1 ≥ −1/8. Again
the linear forms satisfy part (iv) of NC2.

In view of part (iv) of NC2 it is natural to restrict consideration to the
case in which (x1, x2) lies in the set

R2 =
{
x ∈ R : x1 ≡ 1 (mod 2)

}
.

Our principal result describing the number of rational points on the general
variety (1.7) is now as follows.

Theorem 2 Suppose NC2 holds. The local densities for the variety V with
equations (1.7), for the set R2, are given by

σ∞ = π2 measR, σ2 = 2

and

σp = (1 − χ(p)/p)2Tχ(p), (p ≥ 3), (1.12)

where

Tχ(p) = E(0,0)
p − χ(p)E(0,1)

p − χ(p)E(1,0)
p + E(1,1)

p (1.13)

and

E(u,v)
p =

∞∑
α,β,γ,δ=0

χ(p)α+β+γ+δρ(pα+u, pβ+u, pγ+v, pδ+v)−1. (1.14)

Here ρ(d1, d2, d3, d4) is as in Theorem 1. Moreover, when p � ∆ we have

σp = (1 + χ(p)/p)2. (1.15)

If σp = 0 for any prime p then V has no rational point with (x1, x2) ∈ R2.
If σp 
= 0 for every prime p, then∑

x∈R2

r(L1(x)L2(x))r(L3(x)L4(x)) = {1 + ε}σ∞
∏
p

σp + o(X2).
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where

ε = χ(νν ′)
∏

p|∆, χ(p)=−1

T−(p)/T+(p), (1.16)

with

T±(p) = E(0,0)
p ± E(0,1)

p ± E(1,0)
p + E(1,1)

p . (1.17)

Moreover, when p ≡ −1 (mod 4) we have E
(u,v)
p ≥ 0, so that

|T−(p)| ≤ T+(p).

We also have E
(1,0)
p = E

(0,1)
p = 0 for any prime p ≡ −1 (mod 4) not dividing

∆12∆34.
If ε = −1 then V has no rational point with (x1, x2) ∈ R2.

Thus the factor 1 + ε measures the discrepancy between the true asymp-
totic formula and the Hardy–Littlewood prediction. Although we shall not
prove it here, we may remark that the sums T±(p) are always rational num-
bers, so that the factor 1 + ε is a rational number in the range [0, 2].

We see that Theorem 2 establishes a local to global principle in the shape
of the assertion that if σp > 0 for every p, then there exist rational points on
V , providing that 1 + ε 
= 0. Moreover it is a standard fact that we will have
σp > 0 for any prime for which V has a nonsingular p-adic point. In contrast,
our result does not give a full solution to the weak approximation problem,
since we are unable to restrict the variables x3, x4, x5, x6 in (1.7). However,
we are able to control the variables x1, x2 by our method.

In fact it is known that the Brauer–Manin obstruction is the only obstruc-
tion to both the Hasse Principle and Weak Approximation, for varieties of
the form (1.7). Although this is not formally stated in the literature, it is
possible to use a descent argument to reduce the problem to one involving a
certain intersection of two quadrics in P6, to which Theorem 6.7 of Colliot-
Thélène, Sansuc and Swinnerton-Dyer [3] may be applied. In particular it
follows that our condition 1 + ε > 0 must be equivalent to the emptiness of
the Brauer–Manin obstruction for the Hasse Principle.

In the final section of the paper we shall investigate the examples (1.8)
and (1.9) more fully, as well as the variety

x1(x1 + 12x2) = x2
3 + x2

4, (x1 + 4x2)(x1 + 16x2) = x2
5 + x2

6, (1.18)

for which we shall show that 0 < 1 + ε < 2.
We conclude this introduction by remarking that it should be possible

to replace the character χ by any other nonprincipal real character. In-
deed one should be able to use different characters for each of the four
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linear forms in Theorem 1. In the same way, in Theorem 2 one would
take any two nonprincipal real characters χ1, χ2. One would then hope to
be able to replace the original expression r(L1(x)L2(x))r(L3(x)L4(x)) by
r1(L1(x)L2(x))r2(L3(x)L4(x)), where

ri(m) = 4
∑
d|m

χi(m) (i = 1, 2).

If one also imposed congruence restrictions on the values of the forms Lj(x),
one would then be able to count the representations of L1(x)L2(x) and
L3(x)L4(x) by individual genera of quadratic forms. However, while these
generalizations look plausible, we have checked none of the details, and make
no claim as to the results one might obtain.

2 The level of distribution

In this section we shall investigate the distribution of points x in subsets
of R4, subject to a set of simultaneous divisibility conditions di | Li(x) for
1 ≤ i ≤ 4. Naturally, we shall only be interested in odd values of di. If we
write d = (d1, d2, d3, d4), it is clear that{

x ∈ Z2 : di | Li(x), 1 ≤ i ≤ 4
}

= Λd,

say, is a lattice in Z2. We set

ρ(d) = det(Λd)

as in the statement of Theorem 1. We note that

ρ(d) = [Z2 : Λd] | d1d2d3d4. (2.1)

We shall consider convex regions R(d) ⊆ R for which R(d) is also the interior
of a simple, piecewise continuously differentiable closed curve. We will write
∂R(d) for the length of the boundary curve defining R(d) and we set

R4(d) =
{
x ∈ R(d) : x1 ≡ 1 (mod 4)

}
.

Since R(d) ⊆ R ⊆ [−cX, cX]2 for some constant c, by part (ii) of NC1, we
deduce that

∂R(d) ≤ 8cX,

since R(d) is convex. We may now state our basic result on the level of
distribution of a set of linear forms Li.
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Lemma 2.1 Let Q1, Q2, Q3, Q4 ≥ 2, and write

Q = maxQi and V = Q1Q2Q3Q4.

Then there is an absolute constant A such that

∑
di≤Qi

∣∣∣∣#(Λd ∩R4(d)
)− meas(R(d))

4ρ(d)

∣∣∣∣� (XV 1/2 + XQ + V )(logQ)A,

where the di run over odd integers.

A very similar result is proved by Daniel [4, Lemma 3.2], to which we refer
the reader for details. As in [4, (3.11)] we find that∣∣∣∣#(Λd ∩R(d)) − meas(R(d))

ρ(d)

∣∣∣∣� ∂R(d)

|v| + 1 � X

|v| + 1,

for some nonzero vector v ∈ Λd with coprime coordinates, satisfying

|v| � det(Λd)1/2.

By (2.1) we then deduce that |v| � V 1/2. A trivial modification of Daniel’s
argument yields ∣∣∣∣#(Λd ∩R4(d)) − meas(R(d))

4ρ(d)

∣∣∣∣� X

|v| + 1.

When none of the forms Li(v) vanish, we may estimate∑
d1,d2,d3,d4≤Q

|v|−1 (2.2)

exactly as in [4, §3], giving a bound O(V 1/2(logQ)A). However if Li(v) = 0
for some i we must argue differently. (This situation does not arise in Daniel’s
work since he has an irreducible form f of degree k > 1, so that f(v) cannot
vanish.) Since v has coprime coordinates, there can be only two possibilities
for v for each value of i. Thus we will have |v| � 1, with a constant depending
only on the forms Li. Moreover, if Li(v) = 0 we then have 0 
= Lj(v) � 1
for j 
= i. Thus di may take any value up to Q, while for j 
= i there are only
O(1) available values for dj. It follows that vectors v for which some Li(v)
vanishes will contribute O(Qi) to (2.2). This is sufficient for Lemma 2.1.
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3 The leading term

In this section we shall examine the dominant contribution to the sum S given
by (1.3). We shall use the fact that

r(n) = 4
∑
d|n

χ(d)

for any positive integer n, where

χ(d) =


+1 if d ≡ 1 (mod 4),

−1 if d ≡ 3 (mod 4),

0 if d ≡ 0 (mod 2).

Since Li(x) > 0 and Li(x) ≡ 1 (mod 4) in our situation, we have

r(Li(x)) = 4
∑

d|Li(x)

χ(d) = 4
∑

d|Li(x)

d≤X1/2

χ(d) + 4
∑

d|Li(x)

d>X1/2

χ(d)

= 4
∑

d|Li(x)

d≤X1/2

χ(d) + 4
∑

Li(x)=ed

d>X1/2

χ(d)

= 4
∑

d|Li(x)

d≤X1/2

χ(d) + 4
∑

Li(x)=ed

d>X1/2

χ(e)

= 4
∑

d|Li(x)

d≤X1/2

χ(d) + 4
∑

e|Li(x)

Li(x)>eX1/2

χ(e)

= 4A+(Li(x)) + 4A−(Li(x)), (3.1)

say. We shall use this decomposition for the terms corresponding to L1, L2, L3,
and for L4 we shall write similarly

r(L4(x)) = 4B+(L4(x)) + 4C(L4(x)) + 4B−(L4(x)),

where

B+(m) =
∑
d|m
d≤Y

χ(d), C(m) =
∑
d|m

Y<d≤X/Y

χ(d),

and B−(m) =
∑
e|m

m>eX/Y

χ(e).
(3.2)
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Here Y ≤ X1/2 is a parameter to be specified in due course. For the sums
A− and B− we note that if x is confined to a region R satisfying part (iii)
of NC1, then the variables e which occur in the defining sums will satisfy
e � X1/2 and e � Y in the two cases respectively.

We now write

S =
∑
x∈R4

r(L1(x))r(L2(x))r(L3(x))r(L4(x))

in the form

4S+ + 4S− + 4S0,

where

S± =
∑
x∈R4

r(L1(x))r(L2(x))r(L3(x))B±(L4(x))

and S0 =
∑
x∈R4

r(L1(x))r(L2(x))r(L3(x))C(L4(x)). (3.3)

For the sums S± we shall use the decomposition (3.1) to produce a total of 8
subsums

S±,±,±,± =
∑
x∈R4

A±(L1(x))A±(L2(x))A±(L3(x))B±(L4(x)),

so that

S = 4S0 + 44
∑

S±,±,±,±. (3.4)

We shall see later that S0 is negligible. In this section we consider the remain-
ing terms. Each of the sums S±,±,±,± is treated in the same way, so we shall
consider the case of S+,+,−,−, which is typical. We shall write Q1 = Q2 = X1/2,
and take

Q3 = c3X
1/2 and Q4 = c4Y,

with suitable constants c3 and c4, so that the variables e in the sums for
A−(L3(x)) and B−(L4(x)) will satisfy e ≤ Q3 and e ≤ Q4 respectively. With
this convention, the definitions of A± and B± show that

S+,+,−,− =
∑
di≤Qi

χ(d1d2d3d4)#
(
Λd ∩R4(d)

)
,

where

R(d) = {x ∈ R : L3(x) > d3X
1/2, L4(x) > d4X/Y }. (3.5)
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Since these sets are convex, we conclude from Lemma 2.1 that

S+,+,−,− =
1

4

∑
di≤Qi

χ(d1d2d3d4)ρ
−1(d) meas(R(d))

+O({X7/4Y 1/2 + X3/2 + X3/2Y }(logX)A).

Since Y ≤ X1/2, the error term is O(X7/4Y 1/2(logX)A), which will be ac-
ceptable if we take

Y = X1/2(logX)−2A−2, (3.6)

as we now do. Thus for the general sum we have

S±,±,±,± =
1

4

∑
di≤Qi

χ(d1d2d3d4)ρ
−1(d) meas(R(d)) + O(X2(logX)−1). (3.7)

We now consider the sum∑
Ai<di≤Bi

χ(d1d2d3d4)ρ
−1(d), (3.8)

where Bi ≤ 2Ai for 1 ≤ i ≤ 4. We may suppose without loss of generality
that

A4 ≥ A1, A2, A3. (3.9)

We shall require some information on the function ρ(d). By the Chinese
Remainder Theorem there is a multiplicative property

ρ(d1e1, . . . , d4e4) = ρ(d1, . . . , d4)ρ(e1, . . . , e4), (3.10)

whenever

hcf(d1d2d3d4, e1e2e3e4) = 1.

For most primes it is easy to handle the function ρ explicitly. As in the
introduction, we write ∆ for the product of the 6 possible 2× 2 determinants
∆ij formed from the various pairs Li, Lj of forms. Thus if p is a prime which
does not divide ∆, then for any pair i 
= j, we see that p | Li(x), Lj(x) implies
p | x. Hence if

pei | Li(x) (1 ≤ i ≤ 4) (3.11)

for a prime p � ∆, and eσ(1) ≥ eσ(2) ≥ eσ(3) ≥ eσ(4) for some permutation σ,
then (3.11) is equivalent to

peσ(2) | x and peσ(1)−eσ(2) | Lσ(1)(p
−eσ(2)x).
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Thus

ρ(pe1 , . . . , pe4) = peσ(1)+eσ(2) , p � ∆. (3.12)

For primes p | ∆ we conclude similarly that

ρ(pe1 , . . . , pe4) �∆ peσ(1)+eσ(2) . (3.13)

Turning to (3.8) we set f = d1d2d3∆, and we write d4 = gh, where

g =
∏

pe ‖ d4, p|f
pe, and (h, f) = 1.

Then∑
A4<d4≤B4

χ(d4)ρ
−1(d) =∑

g≤B4

χ(g)ρ−1(d1, d2, d3, g)
∑

A4/g<h≤B4/g
(h,f)=1

χ(h)ρ−1(1, 1, 1, h).

In view of (3.12) we see that the inner sum is∑
A4/g<h≤B4/g

(h,f)=1

χ(h)/h =
∑
d|f

µ(d)
∑

A4/g<h≤B4/g
d|h

χ(h)/h

=
∑
d|f

µ(d)χ(d)/d
∑

A4/gd<j≤B4/gd

χ(j)/j.

However ∑
J<j≤K

χ(j)/j � J−1,

so the sum above is O(gf εA−1
4 ), for any ε > 0.

It follows that (3.8) is

� A−1
4

∑
d1,d2,d3

∑
g≤B4

(d1d2d3)
εgρ−1(d1, d2, d3, g). (3.14)

We shall estimate this sum by Rankin’s method. For any fixed δ > 0 we have
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dεi � dδi � A2δ
i d

−δ
i

providing that ε is small enough. Similarly we have

1 � Aδ
4g

−δ.

It follows that∑
d1,d2,d3

∑
g≤B4

g(d1d2d3)
ερ(d1, d2, d3, g)−1

� (A1A2A3A4)
2δ
∑

d1,d2,d3

∑
g≤B4

g1−δ(d1d2d3)
−δρ(d1, d2, d3, g)−1

� (A1A2A3A4)
2δ

∞∑
d1,d2,d3=1

∞∑
g=1

g1−δ(d1d2d3)
−δρ(d1, d2, d3, g)−1, (3.15)

where g is still restricted to integers composed solely of prime factors p di-
viding f = ∆d1d2d3. In view of the multiplicative property (3.10) we can
factorize the 4-fold sum on the right. For each prime p we write d1 = pa, d2 =
pb, d3 = pc and g = pd, so that the corresponding factor is

∞∑
a,b,c,d=0

pd−(a+b+c+d)δρ(pa, pb, pc, pd)−1, (3.16)

subject to the condition that if p � ∆ then there are no terms with a = b =
c = 0 and d > 0. For those primes p which do not divide ∆ the above sum is
1 + O(Σp), where Σp is a sum of the form

∞∑
a=1

∑
0≤b,c≤a

∞∑
d=0

pd−(a+b+c+d)δρ(pa, pb, pc, pd)−1

≤
∞∑
a=1

∑
0≤b,c≤a

∞∑
d=0

pd−(a+b+c+d)δp−a−d

≤ p−1−δ
{ ∞∑

e=0

p−eδ
}4

= Oδ(p
−1−δ),

by (3.12). The product of all such factors (3.16) is therefore Oδ(1). For the
remaining primes we use (3.13) to show similarly that (3.16) is Oδ,∆(1). The
4-fold sum in (3.16) is therefore bounded, and on choosing δ = 1/10, say, we

see from (3.9) that (3.15) is O(A
4/5
4 ), and hence, from (3.14) that∑

Ai<di≤Bi

χ(d1d2d3d4)ρ
−1(d) � (A1A2A3A4)

−1/20.
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We may now use repeated summation by parts to show that∑
di≤Ai

χ(d1d2d3d4)ρ
−1(d)(d1d2d3d4)

−δ = S(δ) + O((minAi)
−1/20) (3.17)

uniformly for δ > 0, with

S(δ) =
∞∑

d1,d2,d3,d4=1

χ(d1d2d3d4)ρ
−1(d)(d1d2d3d4)

−δ.

The sum S(δ) is absolutely convergent for such δ. Indeed by (3.10) it suffices
to consider the behaviour of the various Euler factors. For each prime the
corresponding factor is

∞∑
a,b,c,d=0

χ(p)a+b+c+dp−(a+b+c+d)δρ(pa, pb, pc, pd)−1 = Ep(δ), (3.18)

say. We write this in the form 1 + Σ where

Σ �
∞∑
a=1

∞∑
b,c,d=0

p−a−(a+b+c+d)δ � p−1−δ,

by (3.12) and (3.13). This suffices to ensure absolute convergence for δ > 0.
Similarly, when p � ∆ we have ρ(p, 1, 1, 1) = p by (3.12), whence

Ep(δ) = 1 + 4χ(p)/p−1−δ + O(p−2) = {1 − χ(p)/p1+δ}−4{1 + O(p−2)},

uniformly for δ > 0. It follows that we can write S(δ) = L(1 + δ, χ)4F (1 + δ)
where

F (s) =
∏
p

Ep(s− 1){1 − χ(p)p−s}4 (3.19)

is absolutely and uniformly convergent for Re(s) ≥ 1. This allows us to take
the limit in (3.17) as δ tends to zero, so that∑

di≤Ai

χ(d1d2d3d4)ρ
−1(d) =

(π
4

)4

F (1) + O((minAi)
−1/20).

It remains to introduce the factor meas(R(d)) into this sum, which we
proceed to do via partial summation. Recall that we are working with the
example (3.5). For ease of notation we shall set d3 = x, d4 = y and f(x, y) =
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meas(R(d)). Then∑
di≤Qi

χ(d1d2d3d4)ρ
−1(d) meas(R(d)) =

∫ Q3

0

∫ Q4

0

fxy(x, y)
∑

d1≤Q1, d2≤Q2
d3≤x, d4≤y

χ(d1d2d3d4)ρ
−1(d)dxdy

by partial summation, on noting that f(Q3, y) = f(x,Q4) = 0 for all x, y.
We therefore obtain

S+,+,−,− =
1

4

(π
4

)4

F (1) measR + O
(∫ Q3

0

∫ Q4

0

|fxy(x, y)|(min(x, y))−1/20
)
.

However Fxy(x, y) � X2/Q3Q4, as one sees from (3.15). Hence the error
term above is O(X2(minQi)

−1/20). We therefore deduce that

S+,+,−,− =
1

4

(π
4

)4

F (1) measR + O(X79/40(logX)A),

and similarly for each of the sums S±,±,±,±. If we now refer to (3.4) and (3.7),
we may conclude as follows.

Lemma 3.1 We have

S = 4π4F (1) measR + 4S0 + O(X2(logX)−1),

where F (1) is given by (3.18) and (3.19), and S0 is given by (3.3).

4 The sum S0—first steps

Clearly we have

S0 �
∑
x∈R4

r(L1(x))r(L2(x))r(L3(x))|C(L4(x))|

=
∑
m∈B

S0(m)|C(m)|, (4.1)

where

B =

{
m ∈ Z :

∃d | m s.t.
Y < d ≤ X/Y

}
∩
{
m ∈ Z :

∃x ∈ R4 s.t.
L4(x) = m

}
(4.2)

and
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S0(m) =
∑

x∈A(m)

r(L1(x))r(L2(x))r(L3(x))

with

A(m) = {x ∈ R4 : L4(x) = m}.
Suppose that the forms Li are given by

Li(x1, x2) = Aix1 + Bix2, (1 ≤ i ≤ 4). (4.3)

We have arranged that Li(x1, x2) ≡ 1 (mod 4) whenever we have x1, x2 ∈ Z
and x1 ≡ 1 (mod 4). It follows that Ai ≡ 1 (mod 4) and Bi ≡ 0 (mod 4).
In particular Ai 
= 0. If we now substitute m = L4(x) for x1, so that x1 =
(m−B4x2)/A4, and write x2 = n for ease of notation, we find that

Li(x) =
aim + bin

A4

= L′
i(m,n),

say, where

ai = Ai, bi = A4Bi −B4Ai, (1 ≤ i ≤ 3).

Thus we have

ai ≡ 1 (mod 4), bi ≡ 0 (mod 4), (1 ≤ i ≤ 3). (4.4)

Note that, as x runs over Z2, not every value m ∈ Z need occur. Indeed,
since x1 ≡ 1 (mod 4) we will have m ≡ 1 (mod 4). We also observe that if x
runs over R, then the corresponding values of m and n will satisfy m,n � X.
Finally we note that we can clear the denominator in L′

i, so that r(L′
i(m,n)) ≤

r(A4(aim + bin)).
We now write

H = 6∆A3
4

∏
1≤i≤3

bi.

This will be nonzero since no two of the original forms L1, . . . , L4 were pro-
portional. We also define a multiplicative function r1(n) by setting

r1(p
e) =

{
(e + 1)3, if p | H or e ≥ 2,

1 + χ(p), otherwise.

Using the multiplicative property of the function r(n) one can then verify
that

r(L′
1(m,n))r(L′

2(m,n))r(L′
3(m,n)) ≤ 64r1(F (n)),
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where

F (n) = A3
4

3∏
i=1

(aim + bin). (4.5)

Our principal tool in handling S0(m) will be a theorem of Nair [7], which
will provide an upper bound of the correct order of magnitude. In order
to apply Nair’s result we must remove fixed prime factors from F . Thus we
first write F (X) = cG(X), where G(X) is a primitive integer polynomial, and
c | H. It follows that r1(F (n)) � r1(G(n)). The only fixed prime factors that
a primitive cubic polynomial can have are p = 2 and p = 3. However since
m ≡ 1 (mod 4) we see from (4.5) that p = 2 can never divide G(n). If G(X)
has p = 3 as a fixed prime divisor then G(X) ≡ ±(X3 −X) (mod 3). Thus
if we split the integers n into the three possible congruence classes n ≡ n0

(mod 3), and write n = 3n̂ + n0 we see that

G(n)

3
= 9

G′′′(n0)

6
n̂3 + 3

G′′(n0)

2
n̂2 + G′(n0)n̂ +

1

3
G(n0) = Ĝ(n̂),

say. Since G′(n0) ≡ ∓1 (mod 3) we see that Ĝ does not have p = 3 as a fixed
prime divisor. Thus, by splitting the range for n into three congruence classes
if necessary, we can produce a polynomial with no fixed prime divisor.

We now state the following special case of Nair’s theorem [7].

Lemma 4.1 Let f(n) be a nonnegative multiplicative function satisfying the
bound f(pe) ≤ (e + 1)4 for every prime power pe. Let G(X) ∈ Z[X] be
a polynomial of degree at most 4, without repeated roots, and with no fixed
prime factor. Write ρ(p) for the number of roots of G modulo p, and ‖G‖ for
the sum of the moduli of the coefficients of G. Then for any δ > 0 there is a
constant cδ such that

∑
n≤N,G(n)>0

f(G(n)) �δ N
∏
p≤N

(
1 − ρ(p)

p

)
exp

(∑
p≤N

f(p)ρ(p)

p

)
,

for N ≥ cδ‖G‖δ.

For our application the range for n will be an interval of length N � X,
which will have to be translated by a distance O(X) in order to produce the
interval (0, N ]. This has the effect of modifying the coefficients of the original
polynomial G. However even after this translation we will have ‖G‖ �
X3. Given the form (4.5) of F we see that G will have three linear factors.
Moreover we have ρ(p) = 1 for p | m, while if p � mH we will have ρ(p) = 3,
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since p | aibj − ajbi would imply p | ∆. We will therefore have

S0(m) �
∑

n≤N,G(n)>0

r1(G(n))

� N
∏
p≤N

(
1 − ρ(p)

p

)
exp

(∑
p≤N

r1(p)ρ(p)

p

)

� N
∏

3<p≤N

(
1 − ρ(p)

p

)
exp

(∑
p≤N

3r1(p)

p

)

� N
∏

p|m, p>3

1 − 1/p

1 − 3/p

∏
3<p≤N

(
1 − 3

p

)
exp

(∑
p≤N

3r1(p)

p

)

� N

(
σ(m)

m

)2

� N(log logN)2, (4.6)

providing that N �δ X
3δ. (Here σ(m) is the usual sum of divisors function.)

Since we trivially have r1(G(n)) � X1/2 we see on taking δ = 1/6 that
S0(m) � X(log logX)2 whether N � X1/2 or not. We therefore deduce the
following result from (4.1).

Lemma 4.2 We have

S0 � X(log logX)2
∑
m∈B

|C(m)|,

where B and C(m) are given by (4.2) and (3.2) respectively.

5 Completion of the proof of Theorem 1

Cauchy’s inequality shows that

∑
m∈B

|C(m)| ≤ (#B)1/2
( ∑

1≤m�X

|C(m)|2
)1/2

. (5.1)

However it is clear that if we let M and D run over powers of 2, then

#B ≤ #
{
m � X : ∃d | m, Y < d ≤ X/Y

}
� log(X/Y 2)

∑
M

#
{
M < m ≤ 2M : ∃d | m, D < d ≤ 2D

}
(5.2)
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for some D in the range Y � D � X/Y . Clearly we may replace d by m/d,
so that

#
{
M < m ≤ 2M : ∃d | m, D < d ≤ 2D

}
≤ #

{
M < m ≤ 2M : ∃d | m, M/2D < d < 2M/D

}
.

Now we may apply the following result.

Lemma 5.1 We have

#
{
n ≤ x : ∃d | n, y < d ≤ 2y

}� x

(log y)η(log log y)1/2

uniformly for 3 ≤ y ≤ x, where η is given by (1.5).

This is the case u = 1, β = 0 of Theorem 21, part (ii) in Hall and Tenenbaum,
see [5, (2.2) and (2.3)].

Lemma 5.1 yields

#{M < m ≤ 2M : ∃d | m, D < d ≤ 2D} � M

(logX)η(log logX)1/2

whenever M ≥ X3/4. For smaller values of M we merely use the trivial bound
O(M). Then (5.2) and (3.6) imply that

#B � X(logX)−η(log logX)1/2. (5.3)

It remains to consider ∑
1≤m≤cX

|C(m)|2,

for a suitable constant c. We expand the term |C(m)|2 and write (d1, d2) = h
and di = hki to produce∑

1≤m≤cX
|C(m)|2

=
∑

d1,d2∈(Y,X/Y ]

χ(d1d2)#
{
m ≤ cX : [d1, d2] |m

}
=
∑

h≤X/Y

∑
k1,k2∈(Y/h,X/Y h]

(k1,k2)=1

χ(h2k1k2)#
{
m ≤ cX : hk1k2 | m

}
=
∑

h≤X/Y

∑
k1,k2∈(Y/h,X/Y h]

(k1,k2)=1

χ(h2k1k2)#
{
n ≤ cX/hk1k2

}
=
∑

h≤X/Y

∑
k1∈(Y/h,X/Y h]

χ(h2k1)
∑

n≤min(cX/Y k1,cX/hk1)

∑
k2

χ(k2), (5.4)
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where the innermost sum in the final expression is subject to the conditions
Y/h < k2 ≤ min(X/Y h, cX/hk1n) and (k2, k1) = 1.

In general we have∑
k≤K, (k,s)=1

χ(k) =
∑
d|s

µ(d)
∑

k≤K, d|k
χ(k)

=
∑
d|s

µ(d)χ(d)
∑
j≤K/d

χ(j)

�
∑
d|s

|µ(d)χ(d)|

� τ(s),

where τ is the usual divisor function. Inserting this bound into (5.4) we
deduce that∑

1≤m≤cX
|C(m)|2 �

∑
h≤X/Y

∑
k1∈(Y/h,X/Y h]

∑
n≤min(cX/Y k1,cX/hk1)

τ(k1)

�
∑

h≤X/Y

∑
k1∈(Y/h,X/Y h]

min
( X

Y k1

,
X

hk1

)
τ(k1)

=
∑

h≤X/Y
min

(X
Y

,
X

h

) ∑
k1∈(Y/h,X/Y h]

τ(k1)/k1

�
∑

h≤X/Y
min

(X
Y

,
X

h

)
log2(X/Y h)

� XY −1
∑
h≤Y

log2(X/Y h) + X
∑

Y <h≤X/Y
h−1 log2(X/Y h)

� X log2(XY −2) + X log3(XY −2).

Our choice (3.6) of Y then ensures that∑
1≤m≤cX

|C(m)|2 � X(log logX)3,

so that (5.1), (5.2) and Lemma 4.2 produce the bound

S0 � X2(logX)−η/2(log logX)15/4.

This suffices, in conjunction with Lemma 3.1, for Theorem 1.

6 Proof of Theorem 2—preliminaries

Our starting point for the proof of Theorem 2 is the identity

r(mn) =
1

4

∑
d|m,n

µ(d)χ(d)r(m/d)r(n/d),
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valid for any positive integers m,n. This identity allows us to pass from a
problem about solutions of a single equation mn = r2 + s2 to one which
involves a series of systems m = d(t2 + u2), n = d(v2 + w2) for varying d.
One can think of this as corresponding to a simple ‘descent’ process.

In view of part (iii) of NC2, we may take m = L1, n = L2, or alternatively
m = L3, n = L4 in the above identity. Thus, if

S =
∑
x∈R2

r(L1(x)L2(x))r(L3(x)L4(x)),

we have

S =
1

16

∑
d,d′

µ(d)µ(d′)χ(dd′) ×∑
x∈R2

r(L1(x)/d)r(L2(x)/d)r(L3(x)/d′)r(L4(x)/d′),

where we set r(q) = 0 if q is not an integer. Since Li is always odd for x ∈ R2,
part (iv) of NC2 shows that we must have x1 ≡ νd (mod 4) if r(L1/d) 
= 0,
and similarly x1 ≡ ν ′d′ (mod 4) if r(L3/d) 
= 0. In particular, only terms for
which dd′ ≡ νν ′ (mod 4) make a nonzero contribution, so that

S =
χ(νν ′)

16

∑
dd′≡νν′ (mod 4)

µ(d)µ(d′)S(d, d′), (6.1)

where

S(d, d′) =
∑

x∈R, x1≡νd (mod 4)

r(L1(x)/d)r(L2(x)/d)r(L3(x)/d′)r(L4(x)/d′).

Henceforth we shall assume, as we clearly may, that d and d′ are both odd.
We now show that it suffices to establish an asymptotic formula for each

individual sum S(d, d′).

Lemma 6.1 Suppose that

S(d, d′) � X2τ(d)5τ(d′)5[d, d′]−2 (6.2)

uniformly for all square-free d, d′, where [d, d′] denotes the least common mul-
tiple of d and d′. Assume further that

S(d, d′) = C(d, d′) measR + o(X2) (6.3)

for all fixed square-free d, d′, and that

C(d, d′) � τ(d)5τ(d′)5[d, d′]−2 (6.4)
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for square-free d, d′. Then, under NC2, we have

S = C measR + o(X2), (6.5)

with

C =
χ(νν ′)

16

∑
dd′≡νν′ (mod 4)

µ(d)µ(d′)C(d, d′). (6.6)

Notice that we do not require any uniformity in d, d′ for (6.3). It suffices
that (6.3) should hold for each fixed pair d, d′.

To prove the lemma we set

E(d, d′;X) = X−2|S(d, d′) − C(d, d′) measR|,
so that (6.2) and (6.4) yield

E(d, d′;X) � τ(d)5τ(d′)5[d, d′]−2

uniformly in X. On the other hand, for fixed d, d′ we will have E(d, d′;X) → 0
as X → ∞. The required result will therefore follow from the dominated
convergence of the double sum

∞∑
d,d′=1

E(d, d′;X),

providing that we can show that

∞∑
d,d′=1

τ(d)5τ(d′)5[d, d′]−2

converges. However if we set (d, d′) = h and d = hk, d′ = hk′ we will have

∞∑
d,d′=1

τ(d)5τ(d′)5[d, d′]−2 ≤
∞∑

h,k,k′=1

τ(k)5τ(k′)5τ(h)10(hkk′)−2,

and the required result follows.
We now establish the bound (6.2), using Nair’s result, Lemma 4.1. We

begin by writing ∆ for the product of the 6 possible 2×2 determinants formed
from the various pairs Li, Lj of forms, as previously. Thus if p is a prime which
does not divide ∆, then p | Li(x), Lj(x) implies p | x, providing that i 
= j. We
shall put e = (d,∆), e′ = (d′,∆) and f = d/e, f ′ = d′/e′. If d, d′ are square-
free, we see that e and f are square-free and that (f,∆) = 1. Similarly e′ and
f ′ are square-free and (f ′,∆) = 1. The condition d | L1(x), L2(x) now implies
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f | x, while d′ | L3(x), L4(x) implies f ′ | x. We therefore set x = gy, where
g = [f, f ′] is the lowest common multiple of f and f ′. We shall henceforth
assume that g � X, as we clearly may. It now follows that

S(d, d′) ≤
∑
y

r(gL1(y)/d)r(gL2(y)/d)r(gL3(y)/d′)r(gL4(y)/d′),

where the sum is for vectors y such that gy ∈ R and y1 ≡ gνd (mod 4). If
the forms Li are given by (4.3), we conclude, using part (iv) of NC2, that
Ai 
= 0 for 1 ≤ i ≤ 4. We proceed to define a multiplicative function r2(n) by
setting

r2(p
e) =

{
1 + χ(p) if p � 3dd′

∏
Ai and e = 1,

(1 + e)4 otherwise.

Then

r(gL1(y)/d)r(gL2(y)/d)r(gL3(y)/d′)r(gL4(y)/d′)

≤ 44τ(g)4r2

(
L1(y)L2(y)L3(y)L4(y)

)
.

Moreover, if we regard y2 as fixed and set F (X) =
∏

Li(X, y2), we will have
F (X) = cG(X) for some primitive quartic polynomial G(X), with c | ∏Ai.
Since we are taking the forms Li to be fixed, it follows that

r(gL1(y)/d)r(gL2(y)/d)r(gL3(y)/d′)r(gL4(y)/d′) � τ(g)4r2(G(y1)).

We intend to apply Lemma 4.1, and we therefore investigate possible fixed
prime factors p of H(X) = G(2X + 1). Since G is quartic and primitive we
must have p = 2 or p = 3. However, for y1 ≡ gνd (mod 4), we see from
part (iv) of NC2 that F (y1), and hence also G(y1), must be odd. Thus
H(0) = G(1) is odd. There remains the case p = 3. Suppose that 3 | H(n)
for all n ∈ Z. We split the available y into congruence classes modulo 3 and
consider the three polynomials

Hj(X) =
H(3X + j)

3
, (j = 0, 1, 2).

Clearly the only possible fixed prime factor of Hj is p = 3. We claim that
if Hj does have 3 as a fixed prime factor, then Hj is divisible by 3 as a
polynomial. Moreover, if we then put Hj(X) = 3Kj(X) we claim that Hj

does not have 3 as a fixed prime factor. To prove these assertions, suppose
that there is some j such that 3 | Hj(n) for all n ∈ Z. Then 9 | H(3n + j),
whence 9 | H(j) + 3nH ′(j) for every n. It follows that 9 | H(j) and 3 |
H ′(j) so that 9 divides the polynomial H(3X + j). Thus 3 | Hj(X) as
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claimed. Moreover, if 9 | Hj(n) for every n, then 27 | H(3n + j), whence
27 | H(j) + 3nH ′(j) + 9n2H ′′(j)/2. From this we deduce that 3 | H ′′(j).
However we then see that

H(m + j) = H(j) + mH ′(j) + m2H
′′(j)
2

+ m3H
(3)(j)

6
+ m4H

(4)(j)

24

≡ m3H
(3)(j)

6
+ m4H

(4)(j)

24
(mod 3).

This produces a contradiction, since we are supposing that H(X) is primitive
and has 3 as a fixed prime factor.

It therefore follows that we may replace H(X) if necessary by a set of 3
polynomials Hj(X) or Kj(X) which have no fixed prime divisor. Moreover
r2(H(3n+ j)) ≤ r2(3)r2(Hj(n)) and r2(H(3n+ j)) ≤ r2(9)r2(Kj(n)), so that
only a factor O(1) is lost. Now, if

S(y2) =
∑
y

r(gL1(y, y2)/d)r(gL2(y, y2)/d)r(gL3(y, y2)/d
′)r(gL4(y, y2)/d

′),

where the sum over y is subject to g(y, y2) ∈ R and y ≡ gνd (mod 4), we
find from Lemma 4.1 that if y2 
= 0, then

S(y2) � X

g
τ(g)4

∏
p≤X

(
1 − ρ(p)

p

)
exp
(∑
p≤X

r2(p)ρ(p)

p

)
� X

g
τ(g)4

∏
5<p≤N

(
1 − 4

p

)
exp
(∑
p≤X

4r2(p)

p

)
exp
( ∑
p|dd′y2

64

p

)
� X

g
τ(g)4

(σ(dd′)
dd′

)64(σ(|y2|)
|y2|

)64

,

as in (4.6). We trivially have

S(0) �
∑

y�X/g

τ(y)4 � X2g−2.

We therefore deduce that

S(d, d′) � X2g−2 + Xg−1τ(g)4τ(dd′)
∑

1≤y2�X/g

(
σ(|y2|)
|y2| )64

� X2g−2τ(g)4τ(dd′).

Since g|dd′ and [d, d′] | ∆g, the bound (6.2) then follows.
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7 Proof of Theorem 2—the asymptotic for-

mula

We must now establish the asymptotic formula (6.5), and analyse its main
term, with a view to proving the bound (6.4). We begin by showing how
Theorem 1 may be applied.

The conditions d | L1(x), L2(x) and d′ | L3(x), L4(x) will hold if and only
if x ∈ Λ(d,d,d′,d′). We therefore take a,b as a basis for Λ(d,d,d′,d′) and write
a = (a1, a2) and b = (b1, b2). Since (dd′, dd′) is clearly in Λ(d,d,d′,d′), we see
that at least one of a1 and b1 must be odd, and we can therefore take a1 to be
odd. By changing the sign of a1 if necessary we can then assume that we have
a1 ≡ νd (mod 4), and finally, replacing b by b− ka for a suitable integer k,
we can assume that 4 | b1. Having normalized the basis a,b of Λ(d,d,d′,d′) in
this way we set x = y1a + y2b. Moreover we write L′

i(y) = d−1Li(y1a + y2b)
for i = 1, 2 and similarly L′

i(y) = d′−1Li(y1a + y2b) for i = 3, 4, and we set

R′(0) = {y ∈ R2 : y1a + y2b ∈ R(0)}.
It now follows that

x1 = y1a1 + y2b1 ≡ y1νd (mod 4),

so that for i = 1, 2 the condition Li(x) ≡ νx1 (mod 4) becomes

L′
i(y) ≡ d−1Li(x) ≡ d−1νx1 ≡ y1 (mod 4).

Similarly for i = 3, 4 we have

L′
i(y) ≡ d′−1

Li(x) ≡ d′−1
ν ′x1 ≡ y1 (mod 4),

since dν ≡ d′ν ′ (mod 4) in (6.1).
It is now apparent that, for fixed d, d′, the forms L′

i(y), and the region
R′(0) satisfy NC1. Evidently we have meas(R′) = measR/ρ(d, d, d′, d′). For
fixed d, d′ we therefore deduce that

S(d, d′) =
4π4

∏
p σp(d, d

′)

ρ(d, d, d′, d′)
measR + o(X2)

for each fixed pair d, d′. Here we have

σp(d, d
′) = Ep(d, d

′){1 − χ(p)/p}4

where

Ep(d, d
′) =

∞∑
α,β,γ,δ=0

χ(p)α+β+γ+δρ0(p
α, pβ, pγ, pδ)−1
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and ρ0(d1, d2, d3, d4) is the determinant of the lattice

Λ1 =
{
y ∈ Z2 : di | L′

i(y), 1 ≤ i ≤ 4
}
.

We now observe that ρ0(d1, d2, d3, d4) is also the index of the lattice Λ1 in
Z2, and hence can equally be identified as the index of

Λ2 =
{
x = y1a + y2b : y ∈ Z2, di | L′

i(y), 1 ≤ i ≤ 4
}

in

Λ3 =
{
x = y1a + y2b : y ∈ Z2

}
.

However we have

Λ2 =
{
x ∈ Z2 : dd1 | L1(x), dd2 | L2(x), d′d3 | L3(x), d′d4 | L4(x)

}
,

and

Λ3 =
{
x ∈ Z2 : d | L1(x), d | L2(x), d′ | L3(x), d′ | L4(x)

}
.

It therefore follows that the index of Λ2 in Λ3 is

ρ(dd1, dd2, d
′d3, d

′d4)

ρ(d, d, d′, d′)
,

and hence that

ρ0(d1, d2, d3, d4) =
ρ(dd1, dd2, d

′d3, d
′d4)

ρ(d, d, d′, d′)
.

We now see that ρ0(p
α, pβ, pγ, pδ) = ρ(pα, pβ, pγ, pδ) if p � dd′, by the multi-

plicative property (3.10). It therefore follows that Ep(d, d
′) = Ep for p � dd′,

with Ep as in Theorem 1.
We now define

N =
∏
Ep=0

p

so that we must have
∏

p σp(d, d
′) = 0 unless N | dd′. For a typical prime

factor p of dd′ let pu ‖ d and pv ‖ d′, so that

ρ(d, d, d′, d′) =
∏
p|dd′

ρ(pu, pu, pv, pv).

Assuming now that N | dd′ we set

FN =
∏
p�N

Ep(1 − χ(p)/p)4.
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Moreover we define E
(u,v)
p by (1.14), so that Ep = E

(0,0)
p . We then see that∏

p σp(d, d
′)

ρ(d, d, d′, d′)
= FN

∏
p|dd′

g(pu, pv),

where

g(pu, pv) =

{
E

(u,v)
p (1 − χ(p)/p)4 if p | N,

E
(u,v)
p /E

(0,0)
p if p � 2N.

If we extend g(m,n) by the multiplicativity condition

g(ef, e′f ′) = g(e, e′)g(f, f ′) if hcf(ee′, ff ′) = 1,

we then deduce that (6.3) holds with

C(d, d′) = 4π4FNg(d, d′)

when N | dd′, and C(d, d′) = 0 otherwise. Although we have defined g(pu, pv)
for all nonnegative integer exponents u, v the reader should note that only
the values u, v = 0, 1 are relevant for us, since d and d′ may be taken to be
square-free in (6.1).

When p � ∆ we see from (3.12) that Ep = 1 + O(p−1) and

E(u,v)
p ≤ (u + 1)2

p2u
{1 + O(p−1)},

for u ≥ v. Thus

g(pu, pv) ≤ τ(pu)3τ(pv)3[pu, pv]−2

for p �∆,N 1. For the remaining primes p �∆,N 1, and in particular those
primes which divide ∆, we automatically have

g(pu, pv) �∆ τ(pu)3τ(pv)3[pu, pv]−2, (0 ≤ u, v ≤ 1).

We may now deduce the required bound (6.4), with an implied constant
depending on ∆, using the multiplicative property of the function g(d, d′).

We have now established the asymptotic formula (6.5) and the bound
(6.4), and it remains to consider the constant C given by (6.6). Our work
thus far shows that

C =
χ(νν ′)

16
4π4FN

∑
dd′≡νν′ (mod 4)

N |dd′

µ(d)µ(d′)g(d, d′).
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We shall rewrite this as

π4FN

4

∑
2�dd′, N |dd′

χ(νν ′) + χ(dd′)
2

µ(d)µ(d′)g(d, d′) =
π4FN

8
{χ(νν ′)Σ1 + Σ2},

where

Σ1 =
∑

2�dd′, N |dd′
µ(d)µ(d′)g(d, d′) and Σ2 =

∑
N |dd′

χ(dd′)µ(d)µ(d′)g(d, d′).

To evaluate Σ1 we set d = ef where e | N and (f,N) = 1, and similarly
d′ = e′f ′. Then

Σ1 =
{ ∑
e,e′|N,N |ee′

µ(e)µ(e′)g(e, e′)
}{ ∑

(ff ′,2N)=1

µ(f)µ(f ′)g(f, f ′)
}
,

so that we may use the multiplicative property to deduce that

Σ1 =
∏
p|N

{−g(1, p) − g(p, 1) + g(p, p)}
∏
p�2N

{1 − g(1, p) − g(p, 1) + g(p, p)},

whence

FNΣ1 = FN

∏
p|N

{E(0,0)
p − E(0,1)

p − E(1,0)
p + E(1,1)

p }(1 − χ(p)/p)4

×
∏
p�2N

{E(0,0)
p − E(0,1)

p − E(1,0)
p + E(1,1)

p }/E(0,0)
p

=
∏
p�=2

{E(0,0)
p − E(0,1)

p − E(1,0)
p + E(1,1)

p }(1 − χ(p)/p)4, (7.1)

since E
(0,0)
p = 0 when p | N . In exactly the same way we find that

FNΣ2 =
∏
p�=2

{E(0,0)
p − χ(p)E(0,1)

p − χ(p)E(1,0)
p + E(1,1)

p }(1 − χ(p)/p)4. (7.2)

Using the functions Tχ(p) and T±(p) given by (1.13) and (1.17) we therefore
deduce that

C =
π4

8

{
χ(νν ′)

∏
p�=2

T−(p)(1 − χ(p)/p)4 +
∏
p�=2

Tχ(p)(1 − χ(p)/p)4

}
.

This suffices for Theorem 2, providing that we can confirm the evaluation of
σ2 and σ∞, and verify that E

(1,0)
p = E

(0,1)
p = 0 for any prime p ≡ −1 (mod 4)

that does not divide ∆12∆34.
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8 Proof of Theorem 2—local densities

We begin this section by defining and then computing the local densities for
the variety given by (1.7), subject to the condition x ∈ R2. For a prime p > 2
the p-adic density σp is merely

σp = lim
e→∞

p−4eN(pe), (8.1)

where

N(pe) = #

{
x1, . . . , x6

(mod pe)
:
L1(x1, x2)L2(x1, x2) ≡ x2

3 + x2
4 (mod pe),

L3(x1, x2)L4(x1, x2) ≡ x2
5 + x2

6 (mod pe)

}
.

Similarly, for p = 2 the 2-adic density in R2 will be given by (8.1), for p = 2,
but with

N(2e) = #

x1, . . . , x6

(mod 2e)
:

2 � x1,
L1(x1, x2)L2(x1, x2) ≡ x2

3 + x2
4 (mod 2e),

L3(x1, x2)L4(x1, x2) ≡ x2
5 + x2

6 (mod 2e)

 . (8.2)

Finally, the real density is given by

σ∞ =

∫ ∞

−∞

∫ ∞

−∞

∫
x1,... ,x6

e(αQ1 + βQ2)dx1 . . . dx6 dβdα,

where

Q1 = L1(x1, x2)L2(x1, x2) − x2
3 − x2

4, Q2 = L3(x1, x2)L4(x1, x2) − x2
5 − x2

6.

Here (x1, x2) runs over R, and x3, x4, x5, x6 each run over an interval of the
form [−cX, cX], with c a suitably large constant. According to part (iii) of
NC2, this is sufficient.

For a prime p ≡ 1 (mod 4) one easily finds that

#
{
x, y (mod pe) : x2 + y2 ≡ A (mod pe)

}
=

{
pe + epe−1(p− 1) if pe | A,
(1 + νp(A))pe−1(p− 1) if νp(A) < e,

for any integer A, where νp(A) is the value of ν for which pν ‖A. Similarly,
when p ≡ −1 (mod 4) we have

#
{
x, y (mod pe) : x2 + y2 ≡ A (mod pe)

}
=

p2[e/2] if pe | A,
pe−1(p + 1) if νp(A) < e, 2 | νp(A),

0 if νp(A) < e, 2 � νp(A).

(8.3)
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Finally, for p = 2 we have

#
{
x, y (mod 2e) : x2 + y2 ≡ A (mod 2e)

}
= 2e+1, (8.4)

providing that e ≥ 2 and A ≡ 1 (mod 4).
It follows that, for a fixed prime p ≡ 1 (mod 4), we have

N(pe) =
∑
x1,x2

p2e−2(p− 1)2
{

1 + νp(L1(x)L2(x))
}{

1 + νp(L3(x)L4(x))
}

+ O(e2p3e)

as e → ∞, where the summation is for x (mod pe), subject to the condition
that pe � L1(x)L2(x) and pe � L3(x)L4(x). Now, if ν1, ν2, ν3, ν4 < e, then we
see that

#
{
x (mod pe) : νp(Li(x)) = νi, (1 ≤ i ≤ 4)

}
=

∑
f1,f2,f3,f4=0,1

(−1)f1+f2+f3+f4#
{
x (mod pe) : pνi+fi | Li(x), (1 ≤ i ≤ 4)

}
=

∑
f1,f2,f3,f4=0,1

(−1)f1+f2+f3+f4p2eρ(pν1+f1 , pν2+f2 , pν3+f3 , pν4+f4)−1. (8.5)

It therefore follows that

N(pe) = p4e−2(p− 1)2
∑

ν1+ν2<e, ν3+ν4<e

(1 + ν1 + ν2)(1 + ν3 + ν4) ×∑
f1,f2,f3,f4=0,1

(−1)f1+f2+f3+f4ρ(pν1+f1 , pν2+f2 , pν3+f3 , pν4+f4)−1

+ O(e2p3e)

= p4e−2(p− 1)2

∞∑
ν1,ν2,ν3,ν4=0

(1 + ν1 + ν2)(1 + ν3 + ν4) ×∑
f1,f2,f3,f4=0,1

(−1)f1+f2+f3+f4ρ(pν1+f1 , pν2+f2 , pν3+f3 , pν4+f4)−1

+ O(e2p3e)

= p4e−2(p− 1)2

∞∑
µ1,µ2,µ3,µ4=0

ρ(pµ1 , pµ2 , pµ3 , pµ4)−1 ×∑
0≤fi≤min(1,µi)

(−1)f1+f2+f3+f4(1 + µ1 + µ2 − f1 − f2)(1 + µ3 + µ4 − f3 − f4)

+ O(e2p3e).



D.R. Heath-Brown 167

The sum over the fi vanishes unless min(µ1, µ2) = min(µ3, µ4) = 0, in which
case it is 1. We now conclude that

σp = (1 − 1/p)2
∑

min(µ1,µ2)=min(µ3,µ4)=0

ρ(pµ1 , pµ2 , pµ3 , pµ4)−1 (8.6)

= (1 − 1/p)2T−(p).

We proceed to investigate the case p ≡ −1 (mod 4) in much the same
way. Using (8.3) and (8.5) we deduce that

N(pe) = p4e−2(p + 1)2

∞∑
µ1,µ2,µ3,µ4=0

(−1)µ1+µ2+µ3+µ4ρ(pµ1 , pµ2 , pµ3 , pµ4)−1F

+ O(e2p3e),

where F is the number of integers f1, f2, f3, f4 in the range 0 ≤ fi ≤ min(1, µi)
such that f1 + f2 ≡ µ1 + µ2 (mod 2) and f3 + f4 ≡ µ3 + µ4 (mod 2). The
sum over the fi therefore equals 4 if µi ≥ 1 for every i, and equals 1 when
min(µ1, µ2) = min(µ3, µ4) = 0. In the remaining case the sum is equal to 2.
From this we deduce that

σp = (1 + 1/p)2T+(p) (p ≡ −1 (mod 4)). (8.7)

The formula (1.12) therefore follows.
We turn next to the case of p = 2. In view of part (iv) of NC2, we will have

L1(x)L2(x) ≡ L3(x)L4(x) ≡ 1 (mod 4), providing that 2 � x1. According to
(8.2) and (8.4) we deduce that

N(2e) = 22e+2#
{
x (mod 2e) : 2 � x1

}
= 24e+1,

whence

σ2 = 2.

Finally, to evaluate σ∞, we restrict x3, x4, x5, x6 to be nonnegative, and
substitute q1 = L1(x1, x2)L2(x1, x2) − x2

3 − x2
4 for x4, and similarly q2 =

L3(x1, x2)L4(x1, x2) − x2
5 − x2

6 for x6. We write

G1 = L1(x1, x2)L2(x1, x2) − x2
3 − q1, G2 = L3(x1, x2)L4(x1, x2) − x2

5 − q2,

and we set

F (q1, q2) =
1

4

∫
x1,x2,x3,x5

G
−1/2
1 G

−1/2
2 dx1dx2dx3dx5,
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where the integral is subject to (x1, x2) ∈ R and 0 ≤ x3, x5 ≤ cX, together
with the constraints

L1(x1, x2)L2(x1, x2) − x2
3 ≥ q1, L3(x1, x2)L4(x1, x2) − x2

5 ≥ q2.

Then we have

σ∞ = 16

∫ ∞

−∞

∫ ∞

−∞

∫
q1,q2

F (q1, q2)e(αq1 + βq2)dq1dq2 dβdα,

and by the Fourier inversion theorem this reduces to 16F (0, 0). To evaluate
F (0, 0) we observe that ∫ √

A

0

{A− x2}−1/2dx =
π

2
,

whence F (0, 0) = π2 measR/16 and

σ∞ = π2 measR.

Suppose next that the equations (1.7) has an integer solution x1, . . . , x6

with (x1, x2) ∈ R2. It follows from part (iv) of NC2 that x2
3 +x2

4 and x2
5 +x2

6

are nonzero integers, so that the solution is nonsingular. A standard argument
now shows that this solution can be lifted via Hensel’s Lemma to a positive
p-adic density of points, for any prime p. Thus we must have σp > 0 for every
p.

We now evaluate σp when p � ∆. For such primes, (3.12) gives

ρ(pµ1 , pµ2 , pµ3 , pµ4) = pa+b

where a is the maximum of the µi, and if a = µj, say, then b is the maximum
of the set {µ1, µ2, µ3, µ4} \ {µj}. When min(µ1, µ2) = min(µ3, µ4) = 0 we
therefore have

ρ(pµ1 , pµ2 , pµ3 , pµ4) = pµ1+µ2+µ3+µ4 , (8.8)

so that (8.6) yields

σp = (1 − 1/p)2
∑

min(µ1,µ2)=min(µ3,µ4)=0

p−µ1−µ2−µ3−µ4

= (1 − 1/p)2
{ ∑

min(m,n)=0

p−m−n
}2

= (1 + 1/p)2,

when p ≡ 1 (mod 4). This proves (1.15) for such primes.
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The computation for the case p ≡ −1 (mod 4) is somewhat more involved.
We first evaluate

S1 =
∑

min(µ1,µ2)=0, min(µ3,µ4)=0

(−1)µ1+µ2+µ3+µ4ρ(pµ1 , pµ2 , pµ3 , pµ4)−1.

Using the argument of the previous paragraph we find that

S1 =
∑

min(µ1,µ2)=0, min(µ3,µ4)=0

(−1)µ1+µ2+µ3+µ4p−µ1−µ2−µ3−µ4

=
{ ∑

min(m,n)=0

(−1)m+np−m−n
}2

= (p− 1)2(p + 1)−2.

Next we consider

S2 =
∑

µ1,µ2,µ3≥1

(−1)µ1+µ2+µ3ρ(pµ1 , pµ2 , pµ3 , 1)−1.

We may write this as

S2 =
∑

a,b,c≥1

(−1)a+b+cpmin(a,b,c)p−a−b−c

=
∞∑
k=1

pk
∑

min(a,b,c)=k

(−1)a+b+cp−a−b−c

=
∞∑
k=1

pk
{ ∞∑
a,b,c=k

(−1)a+b+cp−a−b−c −
∞∑

a,b,c=k+1

(−1)a+b+cp−a−b−c
}

=
∞∑
k=1

pk
{

(
(−p−1)k

1 + p−1
)3 − (

(−p−1)k+1

1 + p−1
)3

}

=
1 + p−3

(1 + p−1)3

∞∑
k=1

pk(−p−1)3k

= − 1 + p−3

(1 + p−1)3

1

p2 + 1
.

Of course we get the same result for any sum in which three of the µi are at
least 1 and the fourth is 0. The next sum to compute is

S3 =
∑

µ1,µ2≥1

(−1)µ1+µ2ρ(pµ1 , pµ2 , 1, 1)−1.

This is easily found to be

S3 =
∑
a,b≥1

(−1)a+bp−a−b = (p + 1)−2.
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Now if

S4 =
∑

µ1,µ2≥1, min(µ3,µ4)=0

(−1)µ1+µ2+µ3+µ4ρ(pµ1 , pµ2 , pµ3 , pµ4)−1,

then

S4 = 2S2 + S3 = −(1 − p−1)2

(1 + p−1)2

1

p2 + 1
.

Clearly we have the same result if the rôles of µ1, µ2 and µ3, µ4 are inter-
changed. Finally we examine

S5 =
∞∑

µ1,µ2,µ3,µ4=1

(−1)µ1+µ2+µ3+µ4ρ(pµ1 , pµ2 , pµ3 , pµ4)−1.

Now, according to (3.12) we have

S5 = p−2

∞∑
µ1,µ2,µ3,µ4=0

(−1)µ1+µ2+µ3+µ4ρ(pµ1 , pµ2 , pµ3 , pµ4)−1

= p−2{S1 + 2S4 + S5},
whence

S5 =
S1 + 2S4

p2 − 1
= −S4.

Then, as in the proof of (8.7), we have

σp = (1 + 1/p)2{S1 + 4S4 + 4S5} = (1 + p−1)2S1 = (1 − p−1)2.

This establishes (1.15) when p ≡ −1 (mod 4).
Having dealt with the evaluation of the densities σp, our next task is to

interpret the sums E
(u,v)
p given by (1.14). Only primes p ≡ −1 (mod 4) need

concern us. We claim that whenever p ≡ −1 (mod 4) we have

E(u,v)
p = p−2u−2v(1 + 1/p)−4 lim

e→∞
p−6eN (u,v)(pe), (8.9)

where

N (u,v)(pe) = #


x1, . . . , x10

(mod pe)
:

L1(x1, x2) ≡ pu(x2
3 + x2

4) (mod pe),
L2(x1, x2) ≡ pu(x2

5 + x2
6) (mod pe),

L3(x1, x2) ≡ pv(x2
7 + x2

8) (mod pe),
L4(x1, x2) ≡ pv(x2

9 + x2
10) (mod pe)

 .

If pu | L1(x1, x2), then the number of pairs x3, x4 modulo pe for which

p−uL1(x1, x2) ≡ x2
3 + x2

4 (mod pe−u)
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will be given by (8.3). Thus if pe | L1(x1, x2) there are O(pe) such pairs. Oth-
erwise suppose that pf ‖L1(x1, x2). Then if f−u is even there are pe+u−1(p+1)
pairs, and if f − u is odd there are no such pairs. If we set u1 = u2 = u and
u3 = u4 = v we then find that

N (u,v)(pe) = p4e+2u+2v−4(p + 1)4
∑

0≤νi<e
νi≡ui (mod 2)

N(pe; ν1, ν2, ν3, ν4) + O(p5e),

where

N(pe; ν1, ν2, ν3, ν4) = #
{
x1, x2 (mod pe) : νp(Li(x1, x2)) = νi, (1 ≤ i ≤ 4)

}
.

The sum over the νi may be re-written as∑
0≤νi<e

νi≡ui (mod 2)

∑
f1,f2,f3,f4=0,1

(−1)f1+f2+f3+f4
p2e

ρ(pν1+f1 , pν2+f2 , pν3+f3 , pν4+f4)
,

whence

lim
e→∞

p−6eN (u,v)(pe) = p2u+2v(1 + 1/p)4Σ,

with

Σ =
∑

νi≡ui (mod 2)

∑
f1,f2,f3,f4=0,1

(−1)f1+f2+f3+f4

ρ(pν1+f1 , pν2+f2 , pν3+f3 , pν4+f4)

=
∑
gi≥ui

(−1)g1+g2+g3+g4ρ(pg1 , pg2 , pg3 , pg4)−1

as in our treatment of (8.7). This suffices for the proof of (8.9).

It is now clear that E
(u,v)
p ≥ 0 for p ≡ −1 (mod 4). Now let p � ∆12∆34 for

some prime p ≡ −1 (mod 4), and let u = u1 = u2 = 1 and v = u3 = u4 = 0,
say. Suppose we have a solution to the congruences

L1(x1, x2) ≡ p(x2
3 + x2

4), L2(x1, x2) ≡ p(x2
5 + x2

6) (mod pe),

L3(x1, x2) ≡ x2
7 + x2

8, L4(x1, x2) ≡ x2
9 + x2

10 (mod pe)

in which p2f | x1, x2 for some exponent 2f ≤ e− 2. Then pf must divide each
of x3, . . . , x10 and therefore

L1(y1, y2) ≡ p(y2
3 + y2

4), L2(y1, y2) ≡ p(y2
5 + y2

6) (mod pe−2f ),

L3(y1, y2) ≡ y2
7 + y2

8, L4(y1, y2) ≡ y2
9 + y2

10 (mod pe−2f )

where xi = p2fyi for i = 1, 2 and xi = pfyi for 3 ≤ i ≤ 10. Since the
first two of these congruences imply that p | L1(y1, y2), L2(y1, y2) we deduce
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that p | y1, y2, since p � ∆12. It follows that p | L3(y1, y2), L4(y1, y2), and
hence that p divides both y2

7 + y2
8 and y2

9 + y2
10. Thus p2 | y2

7 + y2
8, y

2
9 + y2

10,
so that p2 | L3(y1, y2), L4(y1, y2). Since p � ∆34 this requires p2 | y1, y2,
whence, finally, p2f−2 | x1, x2. We therefore conclude that any solution of
the original congruences must have pe−1 | x1, x2. In view of (8.3) we deduce

that N (1,0)(pe) = O(p4e), whence E
(1,0)
p = 0, by (8.9). Similarly we will have

E
(0,1)
p = 0.

It remains to show that if ε = −1 then the variety (1.7) has no points
with (x1, x2) ∈ R2. Clearly, if ε = −1 then we must have T−(p) = ±T+(p)
for every prime p | ∆ with p ≡ −1 (mod 4). Let

P = {p | ∆ : p ≡ −1 (mod 4), T−(p) = −T+(p)}.

We now argue by contradiction, assuming that we have a point (x1, x2) ∈ R2

on the variety (1.7). Then, since Li(x1, x2) 
= 0 by part (iv) of NC2, we see
that the equations (1.7) entail

νp(L1(x1, x2)) ≡ νp(L2(x1, x2)) (mod 2),

νp(L3(x1, x2)) ≡ νp(L4(x1, x2)) (mod 2),

for any prime p ≡ −1 (mod 4). We now suppose that

2 | νp(L1(x1, x2)) − u and 2 | νp(L3(x1, x2)) − v

with 0 ≤ u, v ≤ 1. Then we can find a nonsingular p-adic solution to the
equations

L1(x1, x2) = pu(y2
3 + y2

4), L2(x1, x2) = pu(y2
5 + y2

6),

L3(x1, x2) = pv(y2
7 + y2

8), L4(x1, x2) = pv(y2
9 + y2

10).

This can then be lifted by the standard procedure to show, via (8.9), that

E
(u,v)
p > 0. Thus

E(u,v)
p > 0 if 2 | νp(L1(x1, x2)) − u and 2 | νp(L3(x1, x2)) − v. (8.10)

We now show that νp(L1(x1, x2)) and νp(L3(x1, x2)) have opposite parities

whenever p ∈ P. Since T−(p) = −T+(p) for such a prime, and E
(u,v)
p ≥ 0 for

all u, v, we will have E
(0,0)
p = E

(1,1)
p = 0. The claim then follows from (8.10).

Conversely we now show that if νp(L1(x1, x2)) and νp(L3(x1, x2)) have
opposite parities, and p ≡ −1 (mod 4), then p ∈ P. For such a prime, it

follows from (8.10) that either E
(1,0)
p > 0 or E

(0,1)
p > 0 . However we have

already seen that E
(1,0)
p = E

(0,1)
p = 0 unless p | ∆12∆34. Thus if νp(L1(x1, x2))

and νp(L3(x1, x2)) have opposite parities, and p ≡ −1 (mod 4), then p | ∆.
Thus p must occur in the product for ε, whence T−(p) = ±T+(p). Since



D.R. Heath-Brown 173

either E
(1,0)
p > 0 or E

(0,1)
p > 0 we cannot have T−(p) = T+(p), so that we

must indeed have p ∈ P.
We have therefore shown that the set P consists precisely of those primes

p ≡ −1 (mod 4) which divide L1(x1, x2)L3(x1, x2) to an odd power. Since
part (iii) of NC2 implies that L1(x1, x2)L3(x1, x2) is positive, we conclude
from part (iv) of NC2 that

χ(νν ′) ≡ L1(x1, x2)L3(x1, x2) ≡ (−1)#P (mod 4). (8.11)

On the other hand we have∏
p|∆, χ(p)=−1

T−(p)/T+(p) = (−1)#P ,

and since ε = −1 we deduce that

(−1)#P = −χ(νν ′).

This contradicts (8.11), and therefore completes the proof of Theorem 2.

9 Examples

In this section we shall discuss Theorem 2 in the context of the examples
(1.10), (1.11) and (1.18). We begin with (1.10), which we repeat here as

y1(y1 + 4y2) = x2
3 + x2

4, (7y1 + 16y2)(19y1 + 44y2) = x2
5 + x2

6.

This has been shown to have no nontrivial rational points, even though it
has nonsingular points in every completion of Q. We take the region R(0) to
be the square (0, 1)2, so that parts (i), (ii) and (iii) of NC2 will be satisfied.
Moreover part (iv) is clearly satisfied with ν = 1 and ν ′ = −1.

The existence of nonsingular local points is sufficient to ensure that σp > 0
for every prime p. However for the forms in (1.10) we find that ∆12∆34 = 24,

so that E
(1,0)
p = E

(0,1)
p = 0 for any primes entering into the product in (1.16).

It follows that T−(p) = T+(p) for such primes, so that ε = χ(νν ′) = χ(−1) =
−1. Thus the failure of the Hasse Principle is fully explained by Theorem 2,
at least as far as points with (y1, y2) ∈ R2 are concerned.

We turn now to the example (1.11), namely

y1(y1 + 4y2) = x2
3 + x2

4, (y1 + 8y2)(13y1 + 64y2) = x2
5 + x2

6.

Although there are rational points in this example, we showed in §1 that all
such points have y2/y1 ≥ −1/8. We shall therefore consider the application
of Theorem 2 to two different regions. We begin by examining the case

y1, y1 + 4y2 > 0, y1 + 8y2 < 0, 13y1 + 64y2 < 0,
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for which there are no rational points. Here we must replace L3 and L4 by
−L3 and −L4 respectively, to produce linear forms which will all be positive.
Having made this change we then take R(0) = (0, 1)2. Then parts (i), (ii)
and (iii) of NC2 will hold. We also see that part (iv) holds, with ν = 1
and ν ′ = −1. We may now proceed as in the previous example, noting that
∆12∆34 = 25 · 5. Once again it follows that ε = −1, so that R2 produces no
solutions.

On the other hand, if we look at the case

y1, y1 + 4y2 > 0, y1 + 8y2 > 0, 13y1 + 64y2 > 0,

we may again work with R(0) = (0, 1)2. This time we have ν = ν ′ = 1 in part
(iv) of Normalization Condition 2. The value ∆12∆34 = 25 · 5 is the same as
before, so that (1.16) yields ε = χ(νν ′) = χ(1) = 1. It therefore follows that
the density of rational points in R2 is twice the product of local densities,
while the density of rational points in the first case was of course zero.

The examples we have looked at so far all have ε = ±1. However other
values may occur, as the example (1.18)

x1(x1 + 12x2) = x2
3 + x2

4, (x1 + 4x2)(x1 + 16x2) = x2
5 + x2

6,

will demonstrate. We shall use the region

R =
{

0 < x1, x1 + 16x2 < X
}

so that

σ∞ = π2 measR =
π2

16
X2.

There is a nonsingular rational point with (x1, x2) = (1, 0), and this is enough
to ensure that all the local densities are positive. Since ∆12∆34 = 24 · 32 and
ν = ν ′ = 1, we now find that ε = T−(3)/T+(3). In order to show that ε 
= ±1

it will suffice to demonstrate that E
(0,0)
3 and E

(1,0)
3 are positive. To do this

we shall use (8.9). When u = v = 0 the congruences

x1 ≡ x2
3 + x2

4 (mod 3), x1 + 12x2 ≡ x2
5 + x2

6 (mod 3),

x1 + 4x2 ≡ x2
7 + x2

8 (mod 3), x1 + 16x2 ≡ x2
9 + x2

10 (mod 3)

have a nonsingular solution with x1 = 1 and x2 = 0, which is sufficient to
ensure that E

(0,0)
3 > 0. Similarly, for u = 1, v = 0, the congruences

x1 ≡ 3(x2
3 + x2

4) (mod 3e), x1 + 12x2 ≡ 3(x2
5 + x2

6) (mod 3e),

x1 + 4x2 ≡ x2
7 + x2

8 (mod 3e), x1 + 16x2 ≡ x2
9 + x2

10 (mod 3e)
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require x1 = 3x′
1, say, so that they are equivalent to

x′
1 ≡ x2

3 + x2
4 (mod 3e−1), x′

1 + 4x2 ≡ x2
5 + x2

6 (mod 3e−1),

3x1 + 4x2 ≡ x2
7 + x2

8 (mod 3e), 3x1 + 16x2 ≡ x2
9 + x2

10 (mod 3e).

There is now a nonsingular solution with x′
1 = x2 = 1, so that E

(1,0)
3 > 0, as

required.
Thus (1.8) provides an example with 0 < 1 + ε < 2. We illustrate this

example numerically. Since σ2 = 2, we see that (1.15) yields∏
p

σp =
2σ3

(1 − 1/3)2

∏
p

(1 + χ(p)/p)2 =
18

π2
σ3.

Moreover one finds from (1.12) that

σ3

(
1 +

T−(3)

T+(3)

)
=

16

9
(T+(3) + T−(3)) =

32

9
(E

(0,0)
3 + E

(1,1)
3 ).

One may now evaluate E
(0,0)
3 and E

(1,1)
3 by a somewhat tedious calculation

along the lines of that given in the previous section to prove (1.15). The
starting point is the fact that (3.12) remains true for p = 3, except when
min(e1, e2) > max(e3, e4), in which case

ρ(3e1 , 3e2 , 3e3 , 3e4) = 3e1+e2−1,

or min(e3, e4) > max(e1, e2), in which case

ρ(3e1 , 3e2 , 3e3 , 3e4) = 3e3+e4−1.

The conclusion is that

E
(0,0)
3 =

9

20
and E

(1,1)
3 =

1

20
.

It follows that we will have asymptotically 2X2 solutions to (1.18) in R2.
This is illustrated by Table 2, in which

S(X) =
∑
x∈R2

r(L1(x)L2(x))r(L3(x)L4(x)).
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Table 2

X S(X) S(X)/2X2

1000 1993472 0.9967 . . .

2000 8030592 1.0038 . . .

4000 32057728 1.0018 . . .

8000 1276046726 0.9969 . . .

16000 511437824 0.9989 . . .

32000 2043518720 0.9978 . . .
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Kronecker double series and the dilogarithm

Andrey Levin

Abstract

In this article we give an explicit expression for the value of a
certain Kronecker double series at any point of complex multiplication
as a sum of dilogarithms whose arguments are values of some modular
unit of higher level at the corresponding points. This result can be
interpreted in the spirit of the Zagier conjecture. The special value
of the Kronecker double series is equal to the value of the partial ζ-
function of an ideal class for an order in an imaginary quadratic field.
The values of the above mentioned modular unit belong to ray class
field corresponding to this order. Thus we get an explicit formula
for the value of a partial ζ-function at s = 2 as a combination of
dilogarithms of algebraic numbers.

1 Introduction

1.1 Modular part

1.1.1 We start by fixing notation and recalling some standard facts about
modular curves. We set H =

{
τ ∈ C

∣∣ �(τ) > 0
}
. Then a matrix M =

( a b
c d ) ∈ GL2(Z) acts on H by M(τ) = aτ+b

cτ+d
. Write L = Lτ for the lattice in C

generated by τ and 1, and E = Eτ for the corresponding elliptic curve C/Lτ .
The matrix M defines a map of lattices M τ : LM(τ) → Lτ given by w →
(cτ +d)w and an isogenyMτ : Eτ → EM(τ) given by ξ → (ad−bc)(cτ +d)−1ξ.
If τ is a fixed point of M , then Mτ is a map of the curve Eτ onto itself. In
this case we omit the subscript τ in our notation.

A point ξ ∈ Eτ defines a character χξ of the lattice Lτ given by χξ(w) =

exp
(

2πi(wξ−wξ)
τ−τ

)
. This pairing is GL2(Z)-invariant: χM(ξ)(w) = χξ(M(w)).

Definition 1.1.2 The second Kronecker double series K2(ξ; τ) is the C∞-
function on C ×H defined by the convergent series

K2(ξ; τ) =
(τ − τ

2πi

)2∑
w∈L

′χξ(w)
|w|4 , (1)

177
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where, as usual,
∑′ denotes the sum over L \ {0}.

One checks that this function is invariant under the action of SL2(Z) on
C ×H defined above.

1.1.3 The Weierstrass ℘-function is the elliptic function defined by the con-
vergent series

℘(ξ; τ) =
1

ξ2
+
∑′

w∈Lτ

( 1

(w + ξ)2
− 1

w2

)
.

1.2 Dilogarithms

Definition 1.2.1 The Euler dilogarithm Li2(z) is the multivalued analytic
function on P1 \ {0, 1,∞} defined as the analytic continuation of the series∑

j≥1
zj

j2
(which converges for |z| < 1).

Definition 1.2.2 The formula

D2(z) = �(Li2(z)) + arg(1− z) · log |z| for z /∈ {0, 1,∞},
D2(0) = D2(1) = D(∞) = 0.

defines a single-valued real function on P1 that we call the Bloch–Wigner
dilogarithm. It is continuous on P1 and smooth on P1 \ {0, 1,∞}

We can extend the function D2 byt linearity to a function on the Q-vector
space Q[C].

1.2.3 Define a map

δ : Q[C \ {0, 1}] → ∧2
C∗ by the formula [x] → x ∧ (1− x).

1.3 Results

Main Theorem 1.3.1 Let τ be a fixed point of M = ( a b
c d ) �= 0, 1. Set

m = detM and n = det(M − 1). Then

− (m+ 1)(n+ 1)
c(τ − τ)

i
K2(0; τ)

= 4mnD2

(ad− bc

cτ + d

)
+

∑
α∈Ker(M)\0

β∈Ker(M−1)\0

m∑
k=1

n∑
l=1

D2

(℘(kα+ lβ)− ℘(α)

℘(β)− ℘(α)

)
;

the arguments of the dilogarithms are in the kernel of δ (see 1.2.3):

δ

(
4mn× [cτ + d] +

∑
α,β,k,l

(℘(kα+ lβ)− ℘(α)

℘(β)− ℘(α)

))
= 0 ∈ ∧2(C∗ ⊗Z Q).
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1.3.2 Our proof is based on introducing a new function L1,1, which we
call the elliptic (1, 1)-logarithm and define in Section 2. The Main Theorem
follows from Theorems A and B below.

Theorem A 1.3.3 Let τ,M,m and n be as in the Theorem 1.3.1. Then

c(τ − τ)

4i

(m+ 1)(n+ 1)

mn
K2(0; τ)

= −D2

(
ad− bc

cτ + d

)
+

∑
α∈KerM\0

β∈Ker(M−1)\0

L1,1(α, β, 0). (2)

Theorem B 1.3.4 Let α and β be two distinct nontrivial torsion points on
an elliptic curve Eτ , say mα = nβ = 0 for some m,n ∈ N. Then

m∑
k=1

n∑
l=1

D2

(℘(kα+ lβ)− ℘(α)

℘(β)− ℘(α)

)
= −2mn

(L1,1(α, β, 0) + L1,1(−α, β, 0)
)
. (3)

1.4 Generalities and structure of the article

1.4.1 The fact that the value of the Kronecker double series K2 at a CM
point can be expressed as a combination of dilogarithms is not new. It can be
derived from a result of Deninger as follows. A CM point τ defines a ring R of
endomorphisms of the correspondent lattice Lτ ; this ring is an order in some
imaginary quadratic extension F = R ⊗Z Q of Q. Extend the field F by the
value of the j-invariant at the point τ . Deninger [D1] constructed an element
in the third algebraic K-group of the field F (j(τ)) that the regulator maps
to the value of K2 at τ . We know by Suslin and Bloch that the regulator on
K3 of a number field is given by the Bloch–Wigner dilogarithm. Hence we
can conclude that the value of the K2 equals a combination of values of the
dilogarithm at numbers in F (j(τ)). The arguments of the dilogarithm in our
formula belong to some extension of the field F (j(τ)), but the set of them is
Galois invariant.

Our proof is in some sense parallel to Deninger’s construction.

1.4.2 We can also interpret the Main Theorem independently of algebraic
K-theory. The value of K2(0; τ) for a CM point τ is (a rational multiple of)
the value at s = 2 of the partial zeta function ζF,A(s) =

∑
a∈AN(a)−s for

some ideal class A. The fact that this value can be written as a combination
of dilogarithms with arguments belonging to the associated class field over F
is a special case of the refined version of Zagier’s conjecture that the values
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of all partial zeta functions at arbitrary integer argument s = m can be
expressed in terms of m-logarithms.

For the case at hand, the same result, of course, also follows from the
theorems of Deninger (existence of elements in K2 with required values of
regulator) and Bloch–Suslin (structure of K2 and description of the regulator
from K2). Our proof, as well as giving an explicit formula, also has the
advantage of avoiding algebraic K-theory. It is possible in principle that this
method could be applied for higher values of m where it is not known that
the regulator may be expressed in terms of polylogarithms.

1.4.3 Theorem A reflects a general phenomenon. Another reflection of this
phenomenon is the following fact. For any elliptic modular curve over Q

the value of its L-function at s = 2 can be expressed as a combination of
the values of a special function (Goncharov’s elliptic (1, 2)-logarithm [G2]), a
“relative” of our elliptic (1, 1)-logarithm. On the other hand, for a CM-curve
the value of the L-function is equal to a combination of the values of a certain
Kronecker double series [D1]. Therefore this Kronecker double series must be
equal to a combination of values of the elliptic (1, 2)-logarithm.

1.4.4 The paper is organized as follows. Section 2 defines the elliptic (1, 1)-
logarithm for an arbitrary elliptic curve and studies its elementary properties.
In Section 3 we realize the Kronecker series as an integral over the square of
the elliptic curve, and, for a curve with complex multiplication, reduce this
integral to an integral over the elliptic curve itself. In Section 4 we compare
the elliptic (1, 1)-logarithm and the dilogarithm. In Section 5 we check that
δ vanishes on the arguments of the dilogarithms on the right-hand side of
the Main Theorem, thus completing its proof. In the final Section 6 we
prove a more general formula, relating values of K2 at torsion points to the
dilogarithm.

1.4.5 Acknowledgments I wish to thank Sasha Goncharov for explaining
his ideas about Chow polylogarithms. I am also grateful to Don Zagier and
Herbert Gangl for very stimulating discussions and computer experiments at
a crucial moment for this work during my stay at the Max-Planck Institut
für Mathematik, Bonn in 1997. I wish to thank the MPI for hospitality.

2 The elliptic (1, 1)-logarithm

In this section we define and study properties of the elliptic (1, 1)-logarithm.
Some motivation for considering this function is Goncharov’s integral repre-
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sentation of the Bloch–Wigner dilogarithm. This representation uses a special
case of a very general differential operator, that we call A∗.

2.1 The operations An

Definition 2.1.1 Let ϕ1, . . . , ϕn be smooth functions on a complex variety
X. We set

An(ϕ1, . . . , ϕn) =

Altn

(
n−1∑
j=0

(−1)jϕ1 ∂ϕ2 ∧ · · · ∧ ∂ϕn−j ∧ ∂ϕn−j+1 ∧ · · · ∧ ∂ϕn

)
, (4)

where Altn denotes alternation under the symmetric group Sn, with a factor
of 1/(n!):

Altn(F (x1, . . . , xn) =
1

n!

∑
σ∈Sn

sign(σ)F (xσ(1), . . . , xσ(n)).

Remark 2.1.2 If ϕj = log |fj|2 for analytic functions fj, then An is the so-
called Beilinson–Deligne product of the fj, up to a factor 2 for odd n and 2i
for even n.

Remark 2.1.3 The (p, q)-component of An equals (−1)q p!q!
(p+q)!

multiplied by

the (p, q)-component of Altn(ϕ1 dϕ2 ∧ · · · ∧ dϕn).

An important property of the operations An is the following:

Proposition 2.1.4 For n > 1

dAn(ϕ1, . . . , ϕn) = ∂ϕ1 ∧ ∂ϕ2 ∧ · · · ∧ ∂ϕn + (−1)n−1∂ϕ1 ∧ ∂ϕ2 ∧ · · · ∧ ∂ϕn

+
n∑

j=1

(−1)j∂∂ ϕj ∧ An−1(ϕ1, . . . , ϕ̂j, . . . , ϕn). (5)

The proof is a straightforward computation.

2.2 Goncharov’s integral representation of the Bloch–
Wigner dilogarithm

Lemma 2.2.1 (Goncharov [G1]) The value of the Bloch–Wigner diloga-
rithm at a point a �= 0, 1,∞ is equal to the following convergent integral:

1

4π

∫
P1

A3(log |z|2, log |1− z|2, log |a− z|2).
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Proof Since we are integrating over a curve, only the (1, 1)-component con-
tributes. Thus we can replace A3 by

− 1

6

(
log |z|2d log |1− z|2 ∧ d log |a− z|2

− log |1− z|2d log |z|2 ∧ d log |a− z|2

+ log |a− z|2d log |z|2 ∧ d log |1− z|2
)
.

We first prove that the integral converges. The integrand is smooth outside 0,
1, a and ∞. Let (r, ϕ) be a polar coordinate system near one of the first three
points; any term of the integrand is asymptotic to one of log |r|rdr ∧ dϕ or
r−1rdr ∧ dϕ, and is integrable. As A3 is trilinear and totally antisymmetric,
we can replace the three arguments (log |z|2, log |1− z|2, log |a− z|2) by(

log |z|2, log |1− z|2 − log |z|2, log |a− z|2 − log |z|2) =(
log |z|2, log |1− z−1|2, log |az−1 − 1|2);

the convergence at ∞ can be checked for these by the same considerations.
By Stokes’s formula we reduce the integral to

− 1

16π

∫ (
log |z|2d log |1− z|2 ∧ d log |a− z|2

− log |1− z|2d log |z|2 ∧ d log |a− z|2
)
.

The (1, 1)-component of dϕ1 ∧ dϕ2 is the negative of the (1, 1)-component of
(∂ − ∂)ϕ1 ∧ (∂ − ∂)ϕ2. Hence the integral is equal to

1

16π

∫ (
log |z|2(∂ − ∂) log |1− z|2 − log |1− z|2(∂ − ∂) log |z|2

)
∧ (∂ − ∂) log |a− z|2.

An easy calculation shows that

dD2(z) = −i
(
log |z|(∂ − ∂) log |1− z| − log |1− z|(∂ − ∂) log |z|

)
.

Therefore the integral is equal to

i

4π

∫
dD2(z) ∧ (∂ − ∂) log |a− z|2 =

1

4πi

∫
D2(z)d(∂ − ∂) log |a− z|2.

As d(∂−∂) log |a−z|2 = 2∂∂ log |a−z|2 = 4πi(δa(z)−δ∞(z)) and D2(∞) = 0,
this completes the proof. �
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Remark 2.2.2 It follows from the proof that the integral representation∑
p∈X

ordp(g)D2(f(p)) =
1

4π

∫
X

A3(log |f |2, log |1− f |2, log |g|2) (6)

holds for any two meromorphic functions f and g on a compact curve X.

Remark 2.2.3 For any curve C∫
C

A3(ϕ1, ϕ2, ϕ3) =

∫
C

1

2
ϕ1 dϕ2 ∧ dϕ3,

so that this integral is zero if ϕj = const for some j.

Lemma 2.2.4 For any three distinct points a, b, c ∈ C, we have∫
P1

A3

(
log |z − a|2, log |z − b|2, log |z − c|2) = 4πD2

(c− a

b− a

)
. (7)

Proof We write r for the ratio c−a
b−a

and make the change of variable x = z−a
b−a

.
Then

log |z − a|2 = log |x|2 + log |b− a|2, log |z − b|2 = log |x− 1|2 + log |b− a|2

and log |z − c|2 = log |x− r|2 + log |b− a|2.

By the preceding remark, any terms that include the constant log |b − a|2
vanish. This reduces the integral to that of Lemma 2.2.1. �

Remark 2.2.5 The integrand in (7) vanishes formally by antisymmetry if
any of a, b and c are equal (we say formally because we are not really allowed
to multiply 1-forms if their singularities coincide). If only two of a, b, c are
equal, then the r.-h.s. of (7) is also zero, since D2(0) = D2(1) = D2(∞) = 0.
Along the triple diagonal the expression in (7) has a discontinuity. However,
it is continuous on the blowup of C3 along the triple diagonal.

2.3 The elliptic (1, 1)-logarithm

In this section we define a real-valued function L1,1(α, β, γ; τ), called the
elliptic (1, 1)-logarithm, on the third power of an elliptic curve (more precisely,
on the fibered third power of the universal elliptic curve over the modular
curve), which is invariant under the diagonal action of the elliptic curve by
translations and antisymmetric under permutations of the variables.
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2.3.1 A natural generalization of the function log |x− a|2 on P1 to an elliptic
curve Eτ is the Kronecker double series

L1(ξ; τ) := log
∣∣θ̃(ξ, τ)∣∣2 + 1

2

2πi

τ − τ
(ξ − ξ)2 = −τ − τ

2πi

∑′
e

w∈L

χξ(w)

|w|2

where
∑

e denotes Eisenstein summation (see Weil [W]), and

θ̃(ξ, τ) =
θ(ξ, τ)

η(τ)
= q1/12(z

1
2 − z−

1
2 )

∞∏
j=1

(1− qjz)(1− qjz−1).

q = exp(2πiτ) (or, more precisely, q1/12 = exp(1
6
πiτ)), and z = exp(2πiξ)

(or, more precisely, z±
1
2 = exp(±πiξ)). The notation L1 for this function

is not standard. It is meant to emphasize that this function is the elliptic
1-logarithm.

2.3.2 The function L1 is the Green function for the operator ∂∂ on an
elliptic curve:

∂∂(L1(ξ; τ)) = 2πiδ0 +
2πi

τ − τ
dξ ∧ dξ.

Here δ0 denotes the delta function at zero.

2.3.3 The function L1 satisfies the distribution relation∑
α:Mτ (α)=β

L1(α; τ) = L1(β;M(τ)).

2.3.4 Any elliptic function f with ordβ(f) = 0 has a “theta decomposition”

log |f(ξ)|2 − log |f(β)|2 =
∑

ordα(f)
(
L1(ξ − α)− L1(β − α)

)
. (8)

Thus the natural elliptic generalization of the function D2

(
c−a
b−a

)
is the

following

Definition 2.3.5 The elliptic (1, 1)-logarithm L1,1(α, β, γ; τ) is the conver-
gent integral:

1

4π

∫
Eτ

A3

(
L1(ξ − α),L1(ξ − β),L1(ξ − γ)

)
.

The convergence of the integral can be checked by the same consideration as
for D2(a).
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Remark 2.3.6 As above, only the (1, 1)-component of the integrand gives a
nontrivial contribution, so

L1,1

(
α, β, γ; τ

)
= − 1

8π

∫
Eτ

L1(ξ − α) dL1(ξ − β) ∧ dL1(ξ − γ).

We give another definition of this function based on Fourier expansions:

Lemma 2.3.7 Considered as a distribution, the function L1,1(α, β, γ; τ) is
equal to the following series

(τ − τ)2

16π2i
×

∑
w1+w2+w3=0

wi 
=0

χα(w1)χβ(w2)χγ(w3)(w2w3 − w2w3)

|w1|2|w2|2|w3|2 .

A series of this kind was introduced by Deninger [D2]. In contrast to his
case, however, our series is not absolutely convergent.

Proof By the preceding remark, we can compute the following integral

− 1

8π

∫
−τ − τ

2πi
×
∑
w1 
=0

χξ−α(w1)

|w1|2 ×

( ∑
w2 
=0

χξ−β(w2)(w2dξ − w2dξ)

|w2|2
)
∧
( ∑

w3 
=0

χξ−γ(w3)(w3dξ − w3dξ)

|w3|2
)

= − 1

8π

τ − τ

2πi

∫ ∑
wi 
=0

χξ−α(w1)χξ−β(w2)χξ−γ(w3)(w2w3 − w2w3)

|w1|2|w2|2|w3|2 dξ ∧ dξ.

The integrals of the terms with w1 + w2 + w3 �= 0 vanish, as integrals of
nontrivial harmonics over a torus, so we get

− 1

8π

τ − τ

2πi

∑
w1+w2+w3=0

wi 
=0

χα(w1)χβ(w2)χγ(w3)(w2w3 − w2w3)

|w1|2|w2|2|w3|2
∫

dξ ∧ dξ

= − 1

8π

τ − τ

2πi

∑
w1+w2+w3=0

wi 
=0

χα(w1)χβ(w2)χγ(w3)(w2w3 − w2w3)

|w1|2|w2|2|w3|2 × (−(τ − τ)).

�

Remark 2.3.8 This Fourier series is antisymmetric under permutations of
α, β and γ, since

w2w3 − w2w3 =
1

3

∣∣∣∣∣∣
1 1 1
w1 w2 w3

w1 w2 w3

∣∣∣∣∣∣ for w1 + w2 + w3 = 0.
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2.3.9 The function L1,1 is smooth outside the diagonals; this follows from
the general formula for differentiation of an integral with respect to a para-
meter. L1,1 is zero on the diagonals, because A3 is antisymmetric.

Lemma 2.3.10 L1,1 is continuous on the complement of the triple diagonal
α = β = γ.

Proof We prove that

lim
t→0

L1,1(tα, tβ, γ; τ) = 0 for γ �= 0.

We choose some rather small ε and represent the integral as the sum of the
integral over the disk of radius ε around 0 and the integral over the comple-
ment of this disk inside the elliptic curve. The second integral tends to zero,
as the integral of any term of A3 converges and A3 is antisymmetric. Inside
the disk, L1(ξ− tα) equals log |ξ− tα|2+ϕ(ξ, tα), where ϕ(ξ, tα), is a smooth
function, the same is true for L1(ξ − tβ). Substitute this decomposition into
A3; we get several types of summands: 1) all the arguments of A3 are smooth,
2) one argument is singular and 3) two arguments are singular. In the first
two cases the integral tends to zero for the same reason as above. To estimate
the last summand, perform the change of variable z = t−1ξ. We get∫

|ξ|<ε

A3

(
log |ξ − tα|2, log |ξ − tβ|2,L1(ξ − γ)

)
=

∫
|ξ|<t−1ε

A3

(
log |z − α|2, log |z − tβ|2,L1(tz − γ)− L1(−γ)

)
+

∫
|ξ|<t−1ε

A3

(
log |z − α|2, log |z − tβ|2,L1(−γ)

)
,

and the second integral tends to zero because L1(−γ) is a constant.

For small t, the first integral can be represented as a sum of the integral
over the disk of radius

√
t−1ε and that over the annulus

√
t−1ε < |z| < t−1ε.

In the second integral, replace log |z − β|2 by log |z − β|2 − log |z − α|2. The
integral over the disk is small since L1(tz − γ) and also its derivatives are
small; the integral over the annulus is small because log |z−β|2− log |z−α|2|
and its derivatives are small. �

Lemma 2.3.11 Let α, β and γ be points on an elliptic curve, not all three

coincident. Then the limit of L1,1(tα, tβ, tγ; τ) as t→ 0 equals D2

(
γ−α
β−α

)
.
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Proof We fix some rather small ε and represent the integral as the sum
of the integral over the disk of radius ε around 0 and the integral over the
complement of this disk inside the elliptic curve. The second integral tends
to zero, as A3 is antisymmetric. Inside the disk, L1(ξ − tα) equals log |ξ −
tα|2 + ϕ(ξ, tα), where ϕ(ξ, tα) is a smooth function,and the same is true for
L1(ξ − tβ) and for L1(ξ − tγ). As in the proof of the preceding lemma, only
the summand A3(log |ξ − tα|2, log |ξ − tβ|2, log |ξ − tγ|2) gives a nontrivial
contribution in the limit. Therefore

lim
t→0

L1,1(tα, tβ, tγ; τ)

=
1

4π
lim
t→0

∫
|ξ|<ε

A3

(
log |ξ − tα|2, log |ξ − tβ|2, log |ξ − tγ|2

)
=

1

4π
lim
t→0

∫
|ξ|<t−1ε

A3

(
log |t−1ξ − α|2, log |t−1ξ − β|2, log |t−1ξ − γ|2

)
=

1

4π

∫
C

A3

(
log |z − α|2, log |z − β|2, log |z − γ|2

)
= D2

(γ − α

β − α

)
. �

Remark 2.3.12 L1,1(α, β, γ; τ) is clearly invariant under “diagonal” trans-
lation of the arguments and changing the sign of the arguments, so that the
elliptic (1, 1)-logarithm is a function on the moduli space M1,3 of curves of
genus 1 with three marked points.

3 From the Kronecker series to the elliptic

(1, 1)-logarithm

The reduction of the Kronecker series K2 to the elliptic (1, 1)-logarithm for an
elliptic curve with complex multiplication splits up into two steps. We first
represent K2(ξ; τ) as an integral over the square of the elliptic curve. This
representation is valid for any elliptic curve and for any point ξ on it. We then
reduce the integral over the square of the elliptic curve to an integral over the
elliptic curve itself; this is possible for a curve with complex multiplication,
and uses the existence of an extra projection of the square of the curve onto
itself.

3.1 An integral representation of the Kronecker series

We start from the simplest example which illustrates the main idea of this
representation.
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Proposition 3.1.1

K2(α; τ) =

τ − τ

2πi

∫
Eτ×Eτ

L1(α− η1 − η2)
∂L1(η1)

∂η1

∂L1(η2)

∂η2

dη1 ∧ dη1

τ − τ
∧ dη2 ∧ dη2

τ − τ
. (9)

Proof We use the Fourier expansions of L1 and its derivatives

τ − τ

2πi

∫ (
−τ − τ

2πi

∑′
e

w1∈L

χα−η1−η2(w1)

|w1|2
)
×

(∑′
e

w2∈L

χη1(w2)

w2

)(
−
∑′

e
w3∈L

χη2(w3)

w3

)
× dη1 ∧ dη1

τ − τ
∧ dη2 ∧ dη2

τ − τ
.

The integral of the term with w1 �= w2, w1 �= w3 vanishes, as an integral of a
nontrivial harmonic over a torus, so we get the integral

τ − τ

2πi

∫ (
−τ − τ

2πi

∑′
e

w1∈L

χα(w1)

|w1|2
)( 1

−w1

)(
− 1

−w1

)dη1 ∧ dη1

τ − τ
∧ dη2 ∧ dη2

τ − τ

=
(τ − τ

2πi

)2∑
w1∈L

χα(w1)

|w1|4 (−1)2 = K2(ξ; τ). �

At the end of this section we discuss a more symmetric representation of
K2 for any τ and ξ; this result will not be used further. We now state the
main result of this section.

Lemma 3.1.2 Let τ be a fixed point of M = ( a b
c d ) �= 0, 1; we set m = detM

and n = det(M − 1). Write η3 for the expression η1 +Mτ (η2)− α and η4 for
η1 + η2 − β. Then∫
E2

τ

A3

(L1(η1),L1(η2),L1(η3)
)(dη4 ∧ dη4

τ − τ

)
=
πic(τ − τ)

m
K2(−α; τ);

∫
E2

τ

A3

(L1(η1),L1(η2),L1(η4)
)(dη3 ∧ dη3

τ − τ

)
= −πic(τ − τ)K2(−β; τ);

∫
E2

τ

A3

(L1(η1),L1(η3),L1(η4)
)(dη2 ∧ dη2

τ − τ

)
=
πic(τ − τ)

mn
K2(Mτ (β)− α; τ);

∫
E2

τ

A3

(L1(η2),L1(η3),L1(η4)
)(dη1 ∧ dη1

τ − τ

)
= −πic(τ − τ)

n
K2(β − α; τ).

(10)
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Proof We only prove the third equation; the others can be proved by
the same considerations. The last factor of the integrand has type (1, 1)
and is closed, so we can replace the expression A3

(L1(η1),L1(η3),L1(η4)
)
by

1
2
L1(η3)dL1(η1) ∧ dL1(η4). Thus we can calculate the integral

1

2

∫ (
−τ − τ

2πi

∑′
e

w3∈L

χη1+Mτ (η2)−α(w3)

|w3|2
)
×((∑′

e
w1∈L

χη1(w1)dη1

w1

)
∧
(
−
∑′

e
w4∈L

χη1+η2−β(w4)(dη1 + dη2)

w4

)
+
(∑′

e
w1∈L

χη1(w1)dη1

w1

)
∧
(
−
∑′

e
w4∈L

χη1+η2−β(w4)(dη1 + dη2)

w4

))
∧ dη2 ∧ dη2

τ − τ
.

Since χMτ (η2)(w) = χη2(M(w)), only the terms with w3 + w1 + w4 = 0 and
M(w3) + w4 = 0 give nontrivial contributions in the integral. So we get

1

2

(τ − τ)2

2πi

∑′

w3∈L

χ−α(w3)

|w3|2 ×
(

1

(M − 1)(w3)
× χ−β(−M(w3))

−M(w3)

− 1

(M − 1)(w3)
× χ−β(−M(w3))

−M(w3)

)
×
∫

dη1 ∧ dη1

τ − τ
∧ dη2 ∧ dη2

τ − τ

= −1

2

(τ − τ)2

2πi

∑′

w3∈L

χM(β)−α(w3)

|w3|4 ×
( 1

(cτ + d− 1)(cτ + d)
− 1

(cτ + d− 1)(cτ + d)

)
=

1

2

(τ − τ)2

2πi

c(τ − τ)

nm

∑′

w3∈L

χM(β)−α(w3)

|w3|4

=
πic(τ − τ)

mn
K2(Mτ (β)− α; τ).

We used above the following simple formula: for any isogeny of Eτ to itself,
|cτ + d|2 = ad− bc = detM . �

Remark 3.1.3 For general values of τ any isogeny of Eτ to itself is multi-
plication by some integer, and the r.-h.s. vanishes. Hence the result is only
interesting for an elliptic curve with complex multiplication.
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3.1.4 The function 2πi
τ−τ

K2 can be treated as a component of the vector
valued function

L3(ξ; τ) =
τ − τ

2πi



∑
w∈L

′χξ(w)
w3w∑

w∈L

′χξ(w)
w2w2∑

w∈L

′χξ(w)
ww3


,

(the elliptic trilogarithm), taking values in the symmetric square S2(H) of the
homology group H of the elliptic curve Eτ with complex coefficients. This
space is isomorphic to a direct summand of the second cohomology group of
the square of the elliptic curve. A “natural” basis of this space is

f1 =
dη1 ∧ dη2

(τ − τ)2
, f2 =

dη1 ∧ dη2 − dη2 ∧ dη1

(τ − τ)2
f3 =

dη1 ∧ dη2

(τ − τ)2
.

Proposition 3.1.5

L3(ξ; τ) =

∫
E2

τ

A3 (L1(η1),L1(η2),L1(η1 + η2 − ξ)) ∧
 f1

f2

f3

 . (11)

The proof is a straightforward calculation.

3.2 Reduction to the elliptic (1, 1)-logarithm

3.2.1 Consider the current Φ = 1
2π2A4

(L1(η1),L1(η2),L1(η3),L1(η4)
)
on E2

τ ,
where, as above, η3 = η1 +Mτ (η2)− α and η4 = η1 + η2 − β for some isogeny
M = ( a b

c d ) �= 0, 1. The wedge product of currents is not defined, but for
general α and β the divisors of the singularities of L1’s are in general position,
and the wedge product is well defined; the formula for the differential of the
wedge product also holds.

3.2.2 The differential dΦ of Φ equals

1

2π2
×
(
−∂∂L1(η1) ∧ A3

(
L1(η2),L1(η3),L1(η4)

)
+ ∂∂L1(η2) ∧ A3

(
L1(η1),L1(η3),L1(η4)

)
− ∂∂L1(η3) ∧ A3

(
L1(η1),L1(η2),L1(η4)

)
+ ∂∂L1

(
η4) ∧ A3(L1(η1),L1(η2),L1(η3)

))
,
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because the (4, 0)-part and the (0, 4)-part vanish on a surface. We split the
∂∂L1 into a δ-function part and a smooth part. Integrals with δ-functions are
integrals over the elliptic curve and are equal to sums of values of the elliptic
(1, 1)-logarithm. Integrals of smooth parts of the ∂∂L1 are calculated in the
preceding lemma.

3.2.3 We write B1, . . . , B4 for the δ-parts of the four components of dΦ
and B′

1, . . . , B
′
4 for the smooth ones. We first calculate the integrals using

δ-functions:∫
B1 = −2πi

2π2

∫
Eτ

A3

(
L1(η2),L1(η3),L1(η4)

)
|η1=0

=
1

πi

∫
Eτ

A3

(
L1(η2),L1(Mτη2 − α),L1(η2 − β)

)
=

1

πi

∫
Eτ

∑
α′:Mτ (α′)=α

A3

(
L1(η2),L1(η2 − α′),L1(η2 − β)

)
= −4i

∑
α′:Mτ (α′)=α

L1,1(0, α
′, β).

The same consideration shows that

B2 = 4iL1,1(0, α, β),

B3 = −4i
∑

α′:Mτ (α′)=α
γ′:(Mτ−1)(γ′)=α−β

L1,1(α
′, 0, γ′), and

B4 = 4i
∑

γ′:(Mτ−1)(γ′)=α−β

L1,1(0, β, γ
′).

3.2.4 Since the smooth part of ∂∂L1(ξ; τ) equals 2πi
dξ∧dξ
τ−τ

, the integrals of
B′

j were already calculated in (10).

3.2.5 The integral of the differential of a current over a compact variety is
zero, so that we get

∑
Bi = −∑B′

i, and we have proved the following result:

Proposition 3.2.6 Let τ be a fixed point of M �= 0, 1, with m = detM and
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n = det(M − 1). Suppose that α �= 0 and β �= 0, α,Mτ (α). Then

c(τ − τ)

4i

( 1

m
K2(−α; τ)+K2(−β; τ)+ 1

mn
K2(Mτ (β)−α; τ)+ 1

n
K2(β−α; τ)

)
= −

∑
α′∈M−1(α)

L1,1(0, α
′, β) + L1,1(0, α, β)

−
∑

α′∈M−1(α)
γ′∈(M−1)−1(α−β)

L1,1(α
′, 0, γ′) +

∑
γ′∈(M−1)−1(α−β)

L1,1(0, β, γ
′).

As the function K2 is continuous, we can “degenerate” this formula:

3.2.1 Theorem. Let τ be a fixed point of M �= 0, 1 and m, n as above.
Then

c(τ − τ)

4i

(
m+ n+ 1

mn
K2(−α; τ) +K2(0; τ)

)
= −

∑
α′∈M−1(α)

γ′∈(M−1)−1(α)

L1,1(α
′, 0, γ′), for α �= 0; (12)

c(τ − τ)

4i

(m+ 1)(n+ 1)

mn
K2(0; τ)

= −D2

(
ad− bc

cτ + d

)
−

∑
α′∈Ker(M)\0

γ′∈Ker(M−1)\0

L1,1(α
′, 0, γ′). (13)

Proof The first formula is the result of substituting β = 0; and the second
one is the limit of the first as α → 0. This completes the proof of Theo-
rem A. �

4 From the elliptic (1, 1)-logarithm to the di-

logarithm

In this section we relate the elliptic (1, 1)-logarithm to the dilogarithm. Specif-
ically, we express the combination L1,1(0, α, β; τ) +L1,1(0, α,−β; τ) as a sum
of dilogarithms for any torsion points α and β on any elliptic curve Eτ . The
proof uses the representation of an elliptic curve as a covering of degree 2 of
the projective line.
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4.1 The dilogarithm as a combination of elliptic (1, 1)-
logarithms

We start by expressing the dilogarithm as a combination of elliptic (1, 1)-
logarithms.

4.1.1 The Weierstrass ℘-function maps the elliptic curve as a double cover
of P1. Suppose that ±α on the elliptic curve are the inverse images of a point
a on P1, that is, ℘(±α) = a; similarly, suppose that ℘(±β) = b, ℘(±γ) = c.
Then by 2.2.4,

D2

(
c− a

b− a

)
=

1

4π

∫
P1

A3(log |z − a|2, log |z − b|2, log |z − c|2)

=
1

2

1

4π

∫
Eτ

A3(log |℘(ξ)− ℘(α)|2, log |℘(ξ)− ℘(β)|2, log |℘(ξ)− ℘(γ)|2).

The extra factor of 1/2 reflects the number of branches.

4.1.2 The “theta decomposition” of 2.3.4 implies that

log |℘(ξ)− ℘(α)|2 = L1(ξ + α) + L1(ξ − α)− 2L1(ξ)− 2L1(α).

We substitute this expression into A3 and integrate. A straightforward com-
putation gives

Lemma 4.1.3

D2

(
℘(γ)− ℘(α)

℘(β)− ℘(α)

)
= L1,1(α, β, γ) + L1,1(−α, β, γ) + L1,1(α,−β, γ)

+ L1,1(α, β,−γ)− 2
(
L1,1(0, β, γ) + L1,1(0,−β, γ) + L1,1(α, 0, γ)

+ L1,1(−α, 0, γ) + L1,1(α, β, 0) + L1,1(−α, β, 0)
)
. (14)

4.2 The elliptic (1, 1)-logarithms as a combination of
dilogarithms

Now we combine the expressions of the preceding lemma to cancel almost all
terms on the r.-h.s.

Theorem 4.2.1 For any two nontrivial torsion points α �= ±β on an elliptic
curve Eτ , say mα = nβ = 0 for some m,n ∈ N. Then

m∑
k=1

n∑
l=1

D2

(℘(kα+ lβ)− ℘(α)

℘(β)− ℘(α)

)
= −2mn(L1,1(α, β, 0) + L1,1(−α, β, 0)). (15)
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Sketch proof We must check that all except the two last terms on the
r.-h.s. of (14) cancel after summation. We show that the first one cancels:

L1,1(α, β, kα+ lβ) = L1,1(α− (α+ β), β − (α+ β), kα + lβ − (α+ β))

= L1,1(−β,−α, (k − 1)α+ (l − 1)β)

= L1,1(β, α, (1− k)α+ (1− k)β)

= −L1,1(α, β, (1− k)α+ (1− k)β);

hence the first summands with arguments (k, l) and (1− k, 1− l) only differ
by the sign and the first summands cancel on averaging. The arguments for
the other terms are similar.

This completes the proof of Theorem B and hence of the formula for
K2(0, τ) in the Main Theorem.

Remark 4.2.2 We have proved that the combination

L1,1(α, β, 0) + L1,1(−α, β, 0)
is equal to a sum of dilogarithms for torsion points α and β. It is even true
that the single term L1,1(α, β, 0) is equal to a combination of dilogarithms;
but we do not need this in this expression for the Main Theorem, and it is
rather complicated. We will derive it in Section 6.

5 Vanishing of the map δ

In this section we prove that the argument of the dilogarithm in the Main
Theorem belongs to the kernel of the map δ of 1.2.3.

5.1 Values of the θ-function at torsion points

5.1.1 The theta function

θ̃(ξ, τ) =
θ(ξ, τ)

η(τ)
= q1/12(z

1
2 − z−

1
2 )

∞∏
j=1

(1− qjz)(1− qjz−1)

is not elliptic. It is only quasiperiodic”

θ̃(ξ + 1, τ) = −θ̃(ξ, τ) and θ̃(ξ + τ, τ) = −z−1q−1/2 × θ̃(ξ, τ);

but for any torsion point ξ = rτ + s with r, s ∈ 1
N

Z of order N , we can
redefine the value of the theta function at this point by the formula:

θ̃[ξ](τ) = z1/2+rq−r2/2−rθ̃(ξ, τ).

Translating the argument by a point of the lattice multiplies this value by
some root of unity. We write ≡ for equality modulo multiplication by a root
of unity.
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Remark 5.1.2 If τ is imaginary quadratic over Q, the numbers θ̃[ξ](τ) are
algebraic.

5.1.3 We have the theta decomposition

℘(α; τ)− ℘(β; τ) ≡ θ̃′(0, τ)2 × θ̃[α− β](τ)× θ̃[α+ β](τ)

θ̃[α](τ)2 × θ̃[β](τ)2
.

for any two torsion α and β points.

5.1.4 Let α be a torsion point on the elliptic curve EM(τ). Then∏
β∈M−1α

θ̃[β](τ) ≡ θ̃[α](M(τ)) if α �= 0; and

θ̃′(0, τ)×
∏

β∈KerM\0
θ̃[β](τ) ≡ ad− bc

cτ + d
× θ̃′(0,M(τ)).

5.2 Computations

5.2.1 We first calculate the value of the map δ on ℘(γ)−℘(α)
℘(β)−℘(α)

δ

(
℘(γ)− ℘(α)

℘(β)− ℘(α)

)
=

(
℘(γ)− ℘(α)

℘(β)− ℘(α)

)
∧
(
℘(γ)− ℘(β)

℘(α)− ℘(β)

)

≡
(
θ̃[α− γ]× θ̃[α+ γ]× θ̃[β]2

θ̃[α− β]× θ̃[α+ β]× θ̃[γ]2

)
∧
(
θ̃[β − γ]× θ̃[β + γ]× θ̃[α]2

θ̃[α− β]× θ̃[α+ β]× θ̃[γ]2

)
.

Thus the answer is the same as the result of the following procedure:

1. Define the map ν by the formula

{α, β, γ} → −
(
{α− β} ∧ {β − γ}+ {β − γ} ∧ {γ − α}

+ {γ − α} ∧ {α− β}
)
.

2. Apply ν to the arguments of the function L1,1 on the r.-h.s. of (14).

3. Apply the map
∧2 θ̃ : ξ1 ∧ ξ2 → θ̃[ξ1]∧ θ̃[ξ2] ∈

∧2
C∗ to the result of the

previous step.
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5.2.2 The map
∧2 θ̃ ◦ ν satisfies the same properties as L1,1 under transla-

tions or permutations of arguments. Hence after summation over γ = jα+kβ,
we get

δ

(
m∑
k=1

n∑
l=1

{
℘(kα+ lβ)− ℘(α)

℘(β)− ℘(α)

})
≡ −2mn ∧2 θ̃ ◦ ν({α, β, 0}+ {−α, β, 0})
≡ 2mn(β)

(
θ̃[α− β] ∧ θ̃[β] + θ̃[β] ∧ θ̃[α] + θ̃[α] ∧ θ̃[α− β]

+ θ̃[α+ β] ∧ θ̃[β] + θ̃[β] ∧ θ̃[α] + θ̃[α] ∧ θ̃[α+ β]
)
.

5.2.3 Finally, we perform the last summation:

δ

( ∑
α∈KerM\0

β∈Ker(M−1)\0

m∑
k=1

n∑
l=1

{
℘(kα + lβ)− ℘(α)

℘(β)− ℘(α)

})

≡ 4mn
∑

α∈KerM\0
β∈Ker(M−1)\0

(
θ̃[α− β] ∧ θ̃[β] + (θ̃[β] ∧ θ̃[α] + θ̃[α] ∧ θ̃[α− β]

)
.

now sum the first terms over the α, the second terms over the α and β and
the third terms over the β. We get

4mn

( ∑
β∈Ker(M−1)\0

(
θ̃[Mβ] ∧ (θ̃[β]− θ̃[β] ∧ (θ̃[β]

)
+

(
(a− 1)(d− 1)− bc

cτ + d− 1

)
∧
(
ad− bc

cτ + d

)
+

∑
α∈KerM\0

(
θ̃[α] ∧ θ̃[(M − 1)α]− θ̃[α] ∧ θ̃[α]

))

= 4mn×
(
(a− 1)(d− 1)− bc

cτ + d− 1

)
∧
(
ad− bc

cτ + d

)
.

This expression is the negative of δ of the first term 4mn
{
ad−bc
cτ+d

}
in the

formula (14).

6 Values of the Kronecker double series at

torsion points

In this section we express the value of the Kronecker double series K2(α; τ)
at a CM point τ and a torsion point α on the elliptic curve Eτ as a sum
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of dilogarithms. In (12) we proved that this value of the Kronecker double
series can be reduced to a combination of L1,1(α

′, 0, γ′) (with α′ ∈ M−1(α)
and γ′ ∈ (M − 1)−1(α)), and K2(0, τ). So we will prove that L1,1(α

′, γ′, 0)
equals a sum of dilogarithms.

6.1 Reduction to “standard” functions

6.1.1 Let α be a torsion point of exact order N(α) = 2ρ(α) × N0(α), with
odd N0(α). Denote by fα a function with divisor N(α) × (α − 0). Clearly,
log |fα(η)|2 = const+NL1(η − α)−NL1(η). This yields the formula

Lemma 6.1.2 For any three distinct torsion points α, β and γ

1

4π

∫
Eτ

A3(fα, fβ, fγ) = N(α)N(β)N(γ)×(
L1,1(α, β, γ)− L1,1(0, β, γ)− L1,1(α, 0, γ)− L1,1(α, β, 0)

)
. (16)

Lemma 6.1.3 For any distinct nontrivial torsion points α and β on the el-
liptic curve Eτ

N(α)∑
k=1

N(β)∑
l=1

1

N(α)2N(β)2N(kα + lβ)

∫
Eτ

A3(fα, fβ, fkα+lβ)

= −L1,1(α, β, 0) (17)

The proof is parallel to that of (15). We now reduce the integrals on
the l.-h.s. of the previous equation to “dilogarithmic” integrals. First, we
have a decomposition of fα(η) into a product of “standard” functions gξ =
℘(η−ξ)−℘(ξ). Let λ = λ(α) be a natural number such that 2λ ≡ 1 mod (N0)
and write α0 for the point 2ρα.

Lemma 6.1.4

fα(η)
− 2λ−1

N0 = const

ρ−1∏
i=0

(
℘(η − 2iα)− ℘(2iα)

)2ρ−i−1(2λ−1) ×
λ−1∏
j=0

(
℘(η − 2jα0)− ℘(2jα0)

)2λ−j−1

(18)

Proof Compare the divisors of both sides. �
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Remark 6.1.5 If F is a function on an elliptic curve and ξ a torsion point,
we can define the operation of averaging with a factor 2 by the formula

Avξ2(F )(ξ) =
∞∑
j=0

2−jF (2jξ)

=

ρ(ξ)−1∑
j=0

2−jF (2jξ) +

ρ(ξ)+λ(ξ)−1∑
j=ρ(ξ)

2−j

1− 2−λ(ξ)
F (2jξ). (19)

The last equality is nothing more than the formula for the sum of a geometric
progression. Hence we can rewrite the statement of the preceding lemma
formally as

log(fα(η)) = −N(α)

2
Avα2 (log(℘(η − α)− ℘(α)))

the superscript α denotes the variable over which we average.

6.2 From standard functions to dilogarithms

Lemma 6.2.1 Let k ⊂ K be a quadratic field extension, and write σ for the
involution of K over k. Then

f × gσ − g

fgσ − gfσ
+ g × fσ − f

gfσ − fgσ
= 1 and

gσ − g

fgσ − gfσ
∈ k.

for any f, g ∈ K \ k.
The proof is obvious.

6.2.2 We apply this lemma to the extension C(P1) ⊂ C(E) and “standard”
functions. The involution σ is given by changing sign of the argument of a
function.

Lemma 6.2.3 The “standard” functions gα(η) = ℘(η−α)−℘(α) and gβ(η) =
℘(η − β)− ℘(β) satisfy

gσβ(η)− gβ(η)

gα(η)gσβ(η)− gβ(η)gσα(η)
= K(α, β)× (℘(η)− ℘(α))2

℘(η)− C(α, β)
,

where

C(α, β) =
℘(α)℘′(β) (℘(α+ β)− ℘(α)) + ℘(β)℘′(α) (℘(α+ β)− ℘(β))

℘′(β) (℘(α+ β)− ℘(α)) + ℘′(α) (℘(α+ β)− ℘(β))
,

and

K(α, β) =

−℘′(β)
(℘(α)− ℘(β))× (℘′(β) (℘(α+ β)− ℘(α)) + ℘′(α) (℘(α+ β)− ℘(β)))
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Proof We consider separately the numerator and denominator on the l.-h.s.
The numerator gσβ − gβ is odd, so it vanishes at half-periods. On the other
hand it has double poles at η = ±β. Hence,

gσβ − gβ = c× ℘′(η)
(℘(η)− ℘(β))2

.

The constant c can be calculated by considering the leading term at η = β,
and is equal to −℘′(β).

The denominator gαg
σ
β − gβg

σ
α is also odd. It has a zero of order ≥ 2 at 0,

and hence (by oddness) of order ≥ 3. On the other hand, it has double poles
at η = ±α and ±β. Therefore,

gαg
σ
β − gβg

σ
α = c′ × ℘′(η)× (℘(η)− C(α, β))

(℘(η)− ℘(α))2 × (℘(η)− ℘(β))2

for some constants c′ and C(α, β). These constants can be calculated by
computing the leading terms at α and β;

c′ = −(℘(α)− ℘(β)
)(
℘′(β)

(
℘(α+ β)− ℘(α)

)− ℘′(α)
(
℘(α+ β)− ℘(β))

)
.

�

6.2.4 We write Fαβ for the function
gσ

β−gβ

gαgσ
β−gβgσ

α
. Thus the “non-obvious” zeros

±ξαβ of the function Fαβ are defined by the condition ℘(±ξαβ) = C(α, β)

(and ℘′(±ξαβ) = ±√4C(α, β)3 − c4(τ)C(α, β)− c6(τ), where c4 and c6 are
the coefficients of the Weierstrass equation).

Lemma 6.2.5 For any three points α, β and γ on an elliptic curve

gα ∧ gβ ∧ gγ + gσα ∧ gσβ ∧ gσγ
= (gαFαβ) ∧ (gβFβα) ∧ gγ + (gσαFαβ) ∧ (gσβFβα) ∧ gσγ
−
(
(gαFαγ) ∧ Fβα ∧ (gγFγα) + (gσαFαγ) ∧ Fβα ∧ (gσγFγα)

− Fαβ ∧ (gβFβγ) ∧ (gγFγβ) + Fαβ ∧ (gσβFβγ) ∧ (gσγFγβ)
)
− Fαβ ∧ Fβα ∧ (gγg

σ
γ )

+
(
(gαg

σ
α) ∧ Fβα ∧ Fγα + Fαγ ∧ Fβα ∧ (gγg

σ
γ ) + 2× (Fαγ ∧ Fβα ∧ Fγα)

+ Fαβ ∧ (gβg
σ
β) ∧ Fγβ + Fαβ ∧ Fβγ ∧ (gγg

σ
γ ) + 2× (Fαβ ∧ (Fβγ) ∧ Fγβ)

)
The proof is a straightforward computation.
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6.2.6 The first six terms on the r.-h.s. of the previous equation are of the
form ϕ∧(1−ϕ)∧ψ, so that by (6) the integral of A3 of any such term equals a
sum of dilogarithms. The last seven terms contain only σ-invariant functions,
so the corresponding integrals can be reduced to integrals over CP1 and are
also equal to combinations of dilogarithms. On the other hand, the integral
of A3 of the second term on the l.h.s is equal to the corresponding integral of
the first one for obvious geometric reasons.

6.3 Results

If we combine all previous results, we get the following.

Theorem 6.3.1 For any two distinct nontrivial torsion points α and β on
an elliptic curve, we have

L1,1(α, β, 0) = D2(Φ(α, β)), (20)

where

Φ(α, β) =
1

ord(α) ord(β)

∑
γ∈〈α,β〉\0

Avα2 Av
β
2 Av

γ
2 Φ1(α, β, γ);

here 〈α, β〉 denotes the subgroup generated by α and β, Avξ2(F )(ξ) is defined
by (19) for a torsion point ξ, and

Φ1(α, β, γ) = {Gαβ(γ)}2 + 8
{℘(γ)− ℘(α)

℘(β)− ℘(α)

}
2

+Altα,β

(
2{Gαγ(β)}2 + 2{Gαγ(−β)}2 − {Gαγ(ξβα)}2 − {Gαγ(−ξβα)}2

)
+ 4Cycα,β,γ

({℘(2γ)− ℘(α)

℘(β)− ℘(α)

}
2

)
− 4Cycα,β,γ

({C(α, γ)− ℘(α)

℘(β)− ℘(α)

}
2

)
− 2Altα,β,γ

({ ℘(2γ)− ℘(α)

C(β, γ)− ℘(α)

}
2

)
+Altα,β

(
2
{C(α, γ)− ℘(α)

C(α, β)− ℘(α)

}
2

+2
{ ℘(γ)− C(α, γ)

C(α, β)− C(α, γ)

}
2
+
{ ℘(2γ)− C(α, γ)

C(α, β)− C(α, γ)

}
2
+
{C(α, γ)− ℘(2α)

C(α, β)− ℘(2α)

}
2

)
,

where

Gα,β(η) =
(
℘(η − α)− ℘(α)

)
×K(α, β)

(℘(η)− ℘(α))2

℘(η)− C(α, β)
.

Here C(α, β) and K(α, β) are as in Lemma 6.2.3., the points ±ξαβ are solu-
tions of the equation ℘(±ξαβ) = C(α, β); Altα,β,Altα,β,γ, Cycα,β,γ denote the
(anti)symmetrization with respect to S2, S3, A3 (with a factor 1).
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Theorem 6.3.2 Let τ be a fixed point of M =

(
a b
c d

)
�= 0, 1; m = detM ,

n = det(M − 1). Let α be a torsion point on the curve Eτ . Then

c(τ − τ)

i

(m+ n+ 1

mn
K2(α; τ) +K2(0; τ)

)
= D2

( ∑
α′∈M−1(α)

γ′∈(M−1)−1(α)

Φ(α′, γ′)
)
, (21)

where Φ is defined in the preceding theorem. The argument of the dilogarithm
belongs to the kernel of the map δ : {x}2 → x ∧ (1− x).

We have proved all statements of this theorem except the last one. It can
be proved by the same consideration as in Section 5.
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On Shafarevich–Tate groups and the
arithmetic of Fermat curves

William G. McCallum Pavlos Tzermias

To Sir Peter Swinnerton-Dyer on his 75th birthday.

1 Introduction

Let Q denote the field of rational numbers and Q a fixed algebraic closure of
Q. For a fixed prime p such that p ≥ 5, choose a primitive pth root of unity ζ
in Q and let K = Q(ζ). If a, b and c are integers such that 0 < a, b, a+ b < p
and a + b + c = 0, let Fa,b,c denote a smooth projective model of the affine
curve

yp = xa(1− x)b (1.1)

and let Ja,b,c be the Jacobian of Fa,b,c. Then Ja,b,c has complex multiplication
induced by the birational automorphism (x, y) �→ (x, ζy) of Fa,b,c. Let λ
denote the endomorphism ζ − 1 of Ja,b,c. Note that λp−1 is, up to a unit in
Z[ζ], multiplication by p on Ja,b,c.

We are interested in the Shafarevich–Tate group of Ja,b,c over K, which
we denote simply by X. In [McC88], the first author studied the restriction
of the Cassels–Tate pairing

X[λ]× X[λ] −→ Q/Z (1.2)

and showed that X[λ] is nontrivial in certain cases depending on the reduc-
tion type of the minimal regular model of Fa,b,c over Zp[ζ]. The purpose of
this paper is to extend those results by carrying out higher descents, and
to derive some consequences for the arithmetic of Fermat curves using the
techniques of the second author.

First we recall the main result of [McC88]. The possible reduction types
for Fa,b,c are as shown in Figure 1 [McC82], with the proper transform of the
special fiber of the model (1.1) indicated. The wild type is further divided
into split and nonsplit, according to whether the two tangent components are
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multiplicity 2

Tame Wild

proper
transform

� � �

︸ ︷︷ ︸
p + 1

proper
transform

Figure 1: Reduction types of Fa,b,c

defined over the finite field Fp or conjugate over a quadratic extension. The
reduction type can be computed as follows. For a rational number x of p-adic
valuation 0, let q(x) = (xp−1 − 1)/p, viewed as an element of Fp. Then Fa,b,c
is 


tame if −2abcq(aabbcc) = 0,

wild split if −2abcq(aabbcc) ∈ F×2
p ,

wild nonsplit if −2abcq(aabbcc) /∈ F×2
p .

Let MK be the set of finite places of K and let w denote the unique place of
K above p. Define

U =
{
x ∈ K×/K×p : v(x) ≡ 0 (mod p) for all v ∈ MK

}
,

V = K×
w /K

×p
w . (1.3)

Let π be the uniformizer of Kw defined by

πp−1 = −p and
π

1− ζ
≡ 1 (mod w). (1.4)

If κ : Gal(K/Q) → Z×
p is the Teichmüller character, let V (i) denote the

intersection of the κith eigenspace of V with the subgroup of V generated by
units congruent to 1 modulo πi. Thus V (i) is one-dimensional if 2 ≤ i ≤ p.

Theorem 1.1 ([McC88]) Suppose that Fa,b,c is wild split, p ≡ 1 (mod 4),
and the image of U is nontrivial in both V ((p−1)/2) and V ((p+3)/2). Then

X[λ]/λX[λ2] 	 Z/pZ ⊕ Z/pZ.

The condition on U is satisfied if p � B(p−1)/2B(p+3)/2, where Bk is the
kth Bernoulli number. As noted in [McC88], the technique used to prove
Theorem 1.1 applies to the pairing

X[λ2]× X[λ] −→ Q/Z (1.5)

and yields information about X[λ2].
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Theorem 1.2 Suppose that either of the following conditions is satisfied:

(a) Fa,b,c is wild split and p ≡ 3 (mod 4);

(b) Fa,b,c is wild nonsplit or tame and the image of U in either V ((p+1)/2)
or V ((p+ 3)/2) is trivial.

Then the pairing (1.5) is trivial. Thus X[λ2]/λX[λ3] = 0, that is, X[λ3] is
a free module over Z[ζ]/(λ3).

As discussed in [McC88], the hypothesis on U in condition (b) of the
theorem is quite mild, since for U to be nontrivial in V (k) with k > 1 and
odd requires that p divides Bp−k.

Corollary 1.3 If one of conditions (a) or (b) of Theorem 1.2 is satisfied,
and if |X[p∞]| < p3, then X[p∞] = 0.

Under the conditions of Theorem 1.2, it is natural to ask which occurs
more often: |X[p]| = 0 or |X[p]| ≥ p3. To explore this question, we compute

X[λ3]× X[λ] −→ Q/Z. (1.6)

Theorem 1.4 Suppose that p ≥ 19 is regular, p ≡ 3 (mod 4), Fa,b,c is tame
or wild nonsplit and

q(aabbcc)3 + abcBp−3 �≡ 0 (mod p). (1.7)

Then the pairing (1.6) is nontrivial. Thus X[λ3] �= 0 (and hence, by Corol-
lary 1.3, |X[p∞]| ≥ p3).

For example, the curve y19 = x2(1−x) satisfies the conditions of the theo-
rem. Modest numerical experiments suggest that about half the curves satisfy
the conditions. More precisely, there are about p/6 isomorphism classes of
curves Fa,b,c for a given prime p, and heuristically about half of them are tame
or wild nonsplit. The incongruence (1.7) is usually satisfied for these curves;
for example, it is satisfied for all such curves if p < 100 (and p ≡ 3 (mod 4)).

The next result shows that, in certain cases, one can combine Theorems 1.2
and 1.4 to describe the exact structure of X[p∞]:

Theorem 1.5 Suppose that p, a, b and c are chosen to satisfy the hypotheses
of both Theorems 1.2 and 1.4. If, in addition, the free Z[ζ]/(λ3)-module X[λ3]
has rank 2, then

X[p∞] = X[λ3] 	 (Z[ζ]/(λ3))2.

In Section 6 we establish the following application of the above results:
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Theorem 1.6 Let p = 19, a = 7, b = 1. Then

1. X[p∞] 	 (Z[ζ]/(λ3))2.

2. The Mordell–Weil rank of J7,1,−8 over Q equals 1.

3. The only quadratic points (i.e. algebraic points whose field of definition
is a quadratic extension of Q) on the Hurwitz–Klein curve F7,1,−8 and
also on the Fermat curve X19 + Y 19 + Z19 = 0 are those described by
Gross and Rohrlich in [GR78].

We also note that, by combining Theorem 1.4 with Faddeev’s bounds in
[Fad61], one gets that the Mordell–Weil rank (over Q) of any tame or wild
nonsplit quotient of the Fermat curve F19 or F23 is at most 2.

Lim [Lim95] has also stated a result attempting to improve on [McC88]
in certain cases. However, in Section 6, we show that the hypotheses of
Propositions A and B of [Lim95] are never simultaneously satisfied.

2 Formulas for the pairings

We recall the situation and notation of [McC88]. For φ ∈ OK and F a field
containing K, we write δ = δφ,F for the coboundary map J(F ) → H1(F, J [φ]).
The φ-Selmer group Sφ ⊂ H1(K, J [φ]) is defined to be the subgroup whose
specialization to each completion Kv of K lies in the image of δφ,Kv . It sits
in an exact sequence

0 → J(K)/φJ(K) → Sφ → X[φ] → 0.

For φ, ψ ∈ End(J), we have a pairing

Sφ × Sψ̂ → Q/Z, (2.1)

described in [McC88], which is a lift of the restriction of the Cassels pairing
to X[φ] × X[ψ̂]. An expression for the pairing (2.1) is given in [McC88],
under a certain splitting hypothesis.

We use[McC88] to derive formulas for the pairings (1.5) and (1.6). The
formula for (1.5) is a straightforward consequence of Theorem 2.6 in [McC88];
the formula for (1.6) takes more work. The point is that J [λ3] ⊂ J(K)
(Greenberg [Gre81]), so that it is possible to express the pairings (1.2) and
(1.5) as purely local pairings at w, as explained in [McC88]. However, by
[Gre81] and Kurihara [Kur92], the λ4-torsion on Ja,b,c is not in general defined
over K, introducing an essentially global aspect to the calculation of (1.6).
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For technical reasons, it is convenient to replace λ with an endomorphism
(which we also denote by λ) that is congruent modulo λ5 to the uniformizer
π defined by (1.4), since then

λδ ≡ κ(δ)λ (mod λ5), δ ∈ Gal(K/Q).

In particular, we have λ̂ ≡ −λ modulo λ5, and we will often replace λ̂ with
−λ without mention in what follows, in cases where we are dealing with a
module killed by λ5. Furthermore, it suffices to prove Theorems 1.2 and 1.4
with this new choice of λ. Since λ/λ̂ is a unit, X[λ] = X[λ̂], and we can
proceed by computing the pairing 〈 , 〉k mentioned in (2.1) with φ = λk and
ψ = λ̂.

The local formula for the Cassels–Tate pairing is expressed in terms of
certain local descent maps as follows. Given a p-torsion point Q in J(K)
we denote by DQ a divisor defined over K(Q) representing Q and by fQ a
function on Fa,b,c whose divisor is pDQ. Evaluating fQ on divisors induces a
map ιQ : J(F ) → F×/F×p for any field F containing K(Q).

By [Gre81],

K(J [λ3]) = K and K(J [λ4]) = L = K(η
1/p
p−3), (2.2)

where ηp−3 is a generator for the κp−3-eigenspace of the cyclotomic units in K.
Let ∆̃ ⊂ Gal(L/Q) be a subgroup projecting isomorphically to Gal(K/Q).
For i = 1, 2, 3, 4, we choose points Pi of order λi on J and a generator σ for
G = Gal(L/K) such that

1. P1 is the point represented by the divisor (0, 0)−∞;

2. λPi = Pi−1 for i = 2, 3, 4;

3. Pi is an eigenvector for the action of ∆̃ with character κ1−i;

4. σP4 = P4 + P1.

For i ≤ 4, let eλi(P,Q) be the λi Weil pairing on J [λi]. We have an iso-
morphism J [λi] 	 µip defined over K(Pi) (and thus over K for i ≤ 3), given
by

Q �→ (eλi(Q,P1), . . . , eλi(Q,Pi)). (2.3)

With this identification, by [McC88, Lemma 2.2], we have

δi = δλi,K(Pi) = ιP1 × · · · × ιPi
.

Since J has good reduction outside p and λ has degree p, we can regard Sλi as
a subgroup of H1(K(p)/K, J [λi]), where K(p)/K is the maximal extension
of K unramified outside p. As explained in Section 7 of [McC88], we can also
regard Sλi as a subgroup of U i for i ≤ 3, where U is as defined in (1.3). For
a, b ∈ K×

w , denote by (a, b) the Hilbert symbol.
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Proposition 2.1 Let a ∈ Sλ2, b ∈ Sλ̂, aw = δ(xw), xw ∈ J(Kw). Then

ζp〈a,b〉2 = (ιP3(xw), bw).

Proof This follows from [McC88, Theorem 2.6], with φ = λ2 and ψ = λ. �
For a number field F we denote by O′

F the ring of p-integers in F . Suppose
F ⊂ K(p) and let C be the ideal class group of O′

F . Since the group O′×
K(p) is

p-divisible, we have an exact sequence

0 → µp → O′×
K(p)

p−→ O′×
K(p) → 0,

which induces a long exact sequence of Galois cohomology

· · · → H i−1(K(p)/F,O′×
K(p))

p−→ H i−1(K(p)/F,O′×
K(p)) →

H i(K(p)/F, µp) → H i(K(p)/F,O′×
K(p))

p−→ H i(K(p)/F,O′×
K(p)) → · · ·

If i = 1 then, since H1(K(p)/F,O′×
K(p)) is isomorphic to C, we obtain the

exact sequence

0 → O′×
F /O′×p

F → H1(K(p)/F, µp) → C[p] → 0. (2.4)

Also, by [NSW00, VIII.3], it follows that H2(K(p)/F,O′×
K(p))[p

∞] can be iden-

tified with the subgroup Br(K(p)|F )[p∞] of Br(F )[p∞]. Setting i = 2 in the
above long exact cohomology sequence gives another exact sequence

0 → C/pC → H2(K(p)/F, µp) → Br(K(p)/F )[p] → 0. (2.5)

Lemma 2.2 Every element of H1(K(p)/K, J [λk]) lifts to H1(K, J [λk+1]).
Moreover, if p is regular, it lifts to H1(K(p)/K, J [λk+1]).

Proof Let a ∈ H1(K(p)/K, J [λk]), and let δa ∈ H2(K(p)/K, J [λ]) be the
coboundary of a for the sequence

0 → J [λ] → J [λk+1] → J [λk] → 0. (2.6)

Then the inflation of δa in H2(K, J [λ]) 	 H2(K,µp) = Br(K)[p] has zero
invariant at every place not dividing p. Thus it is zero by the Brauer–Hasse–
Noether theorem (since there is only one place of K dividing p). For the
second statement, we argue in the same way, using (2.5). �

We recall the definition of 〈 , 〉3. Let a ∈ Sλ3 and b ∈ Sλ̂. Lift a to an
element a1 of H1(K, J [λ4]) (which is possible by Lemma 2.2). For each place
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v of K, lift av to an element av,1 that is in the image of δ. Then a1,v − av,1 is
the image of an element cv ∈ H1(Kv, J [λ]), and

〈a, b〉 =
∑
v

cv ∪ bv

where the cup product is with respect to the local pairing

H1(Kv, J [λ])×H1(Kv, J [λ̂]) → Q/Z.

If p is regular, L/K is totally ramified at w, and there is a unique extension
of w to L, that we also denote by w. Let N ′ =

∑p−1
i=1 iσi.

Proposition 2.3 Let a ∈ Sλ3, b ∈ Sλ, aw = δ(xw), xw ∈ J(Kw). Suppose
that λ2

∗a, regarded as an element of O×
K/O×p

K , can be written as NL/Kε for
some ε ∈ O×

L . Then there exists a λ4-torsion point P4, and an element
cw ∈ K×

w such that
ζp〈a,b〉3 = (cw, bw),

and the image of cw in L×
w/L

×p
w satisfies

cw = ιP4(xw)
−1ηN ′ε,

where η ∈ H1(K(p)/L, µp)
G. In addition, if a and b are eigenvectors for the

action of ∆, we may assume that cw is also.

Proof Consider the sequence

0 → J [λ] → J [λ4] → J [λ3] → 0 (2.7)

and the commutative diagram with exact rows

0 → H1(K(p)/L, J [λ])G −→ H1(K(p)/L, J [λ4])G
λ∗−→ H1(K(p)/L, J [λ3])G

resL/K


 resL/K


 resL/K



H1(K(p)/K, J [λ]) −→ H1(K(p)/K, J [λ4])

λ∗−→ H1(K(p)/K, J [λ3]).

The top row is exact because (2.7) splits over L, and hence the sequence

0 → H1(K(p)/L, J [λ]) → H1(K(p)/L, J [λ4]) → H1(K(p)/L, J [λ3])

is exact. By Lemma 2.2, a lifts to an element a1 ∈ H1(K(p)/K, J [λ4]). Let
a′1 ∈ H1(K(p)/L, J [λ4])G be any lift of resL/K a (resL/K a1 itself is one such).
Then

resL/K a1 = a′1η and η ∈ H1(K(p)/L, µp)
G. (2.8)



210 On Shafarevich–Tate groups and the arithmetic of Fermat curves

We now construct a candidate for a′1. Under the identification (2.3) between
J [λi] and µip, the map λi−1 : J [λi] → J [λ] corresponds to projection on the
first component. Hence under the identification H1(K, J [λ3]) = (K×/K×p)3,
a corresponds to an element (x1, x2, x3) ∈ (K×/K×p)3, and λ2

∗a = x1. More-
over, in the identification

H1(L, J [λ4]) 	 (L×/L×p)4,

the action of σ on H1(L, J [λ4]) is intertwined with

(t1, t2, t3, t4) �→ (tσ1 , t
σ
2 , t

σ
3 , t

σ
4 t
σ
1 ), ti ∈ L×/L×p.

Thus (ti) is fixed by G if

tσi = ti, i = 1, 2, 3, and tσ−1
4 = t−1

1 .

By hypothesis, x1 = NL/Kε, ε ∈ O×
L . Then

a′1 = (x1, x2, x3, N
′ε) (2.9)

is an equivariant lift of (x1, x2, x3).
Now let aw,1 be the local lift of a given by aw,1 = δ4(xw). Then

resLw/Kw aw,1 = (x1, x2, x3, ιP4(xw)). (2.10)

Thus, from equations (2.8), (2.9), and (2.10), we get

resLw/Kw(cw) = resLw/Kw(a1,w − aw,1) = ιP4(xw)
−1ηN ′ε.

The last statement of the proposition is clear, since at each stage in the
calculation we can choose eigenvectors, and the maps λ and ιPk

are also
eigenvectors for the action of ∆, by the choices we have made of λ and Pk. �

3 The local approximation

Let Pi be as in the previous section, i = 1, 2, 3, 4, let Di be a divisor on Fa,b,c
representing Pi, and let fi be a function whose divisor is pDi. Take Di and fi
to be defined over K = Q(ζ) if i = 1, 2, 3 and over L = K(η

1/p
p−3) if i = 4. The

maps ιPi
in Propositions 2.1 and 2.3 are computed by evaluating fi on certain

divisors. We use the approximation technique in [McC88] to find expansions
for fi on p-adic discs in Fa,b,c. Given a function f whose divisor is divisible
by p we approximate f on an affinoid Y in Fa,b,c using the fact that

df

f
≡ ω (modY p). (3.1)
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for some holomorphic differential ω on Fa,b,c ([McC88], Theorem 5.2). For
general facts about rigid analysis, we refer the reader to [BGR84].

We recall the notion of congruence used in (3.1). If Y is a one-dimensional
affinoid defined over an extension F of Qp with uniformizer πF , we let A(Y )
be the ring of rigid analytic functions on Y , M(Y ) the quotient field of A(Y ),
and D(Y ) the module of Kähler differentials of M(Y ). We define sub-OF -
modules

A0(Y ) = {f ∈ A(Y ) : |f(x)| ≤ 1 for all x ∈ Y (Cp)}
M0(Y ) = {f/g : f ∈ A0(Y ), g ∈ A0(Y ) \ πFA

0(Y )}
D0(Y ) = {

∑
i

fi dgi : fi, gi ∈ M0(Y )}.

If f, g ∈ A(Y ), c ∈ F , we say that f ≡ g (modY c) if (f − g) ∈ cA0(Y ), and
similarly we define the notion of congruence on Y in M(Y ) and D(Y ). In
order to deduce from (3.1) information about power series expansions of f on
closed discs in Y , we need the following lemmas.

Lemma 3.1 Suppose that Y is a one-dimensional affinoid over a finite ex-
tension F of Qp, Y has good reduction, and Z is an affinoid contained in
Y , isomorphic to a closed disc. If ω ∈ D0(Y ) is a differential with at worst
simple poles on Y that is regular on Z, then ω ∈ D0(Z).

Proof Since Z is isomorphic to a closed disc, it is contained in a residue
class U of Y (or is equal to Y , in which case there is nothing to prove).
It is clear from the definitions that D0(Y )|U = D0(U), hence ω ∈ D0(U).
Furthermore, since Y has good reduction, U is isomorphic to an open disc.
Choose a parameter t for U such that Z is the disc |t| ≤ |c| < 1 for some
c ∈ F , and write

ω = g dt+
n∑
i=1

ai
t− bi

dt, g ∈ OF [[t]], ai, bi ∈ OF , |c| < |bi| < 1.

Expanding the polar terms in powers of t/bi and setting t = cs, we get
ω = f ds for some f ∈ OF [[s]]. Since s is a parameter on Z, this proves the
lemma. �

Lemma 3.2 Suppose that f is a function whose divisor is divisible by p. Let
Y be an affinoid with good reduction contained in Fa,b,c and let Z be a p-
adic disc contained in Y such that there is a function on Fa,b,c restricting
to a parameter on Z. If ω satisfies the congruence (3.1) (modY p), then it
satisfies the same congruence (modZ p).
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Proof With notation as in [McC88], we have

df

f
= ω + pη, η ∈ D0(Y ).

Let g be a function on Fa,b,c such that f/gp is regular on Z (we can construct
g using a parameter on Z as in the hypotheses). Since a suitable scalar
multiple of g is in M0(Y ), d log g ∈ D0(Y ). Thus η − d log g ∈ D0(Y ) and is
also regular on Z, and hence is in D0(Z) by Lemma 3.1. Thus

df

f
≡ df

f
− p

dg

g
= ω + p

(
η − dg

g

)
≡ ω (modZ p). �

We apply these considerations to the affinoid Y introduced in [McC88]
and defined as follows. Choose πK = π as the uniformizer for Kw. Let s and
t be the functions on Fa,b,c defined by

x = −a

c
(1 + π(p−1)/2s) (3.2)

y = (−1)caabbcc(1 + πt). (3.3)

Let Y be the affinoid defined over Lw by the inequalities

|t| ≤ |π−1
L |, |s| ≤ 1.

A basis of holomorphic differentials on Fa,b,c is

ωk = Ek
x[

ka
p ](1− x)[

kb
p ]

yk
dx, k ∈ Ha,b,c,

for some constants Ek and where Ha,b,c is a certain subset of {1, 2, . . . , p− 1}
of cardinality (p − 1)/2 (we can identify Ha,b,c with the CM-type of Fa,b,c).
We can and do choose the constants Ek so that ωk has expansion

ωk ≡ ds (modY πL), (3.4)

(note that this normalization is different from that of [McC88]). Now P1 is the
λ-torsion point represented by the divisor (0, 0)−∞, and we choose f1 = x.
In [McC88] it was shown that

df1

f1

≡ π(p−1)/2
∑

k∈Ha,b,c

bkωk (modY p) (3.5)

for some p-adic integers bk satisfying

∑
k∈Ha,b,c

bkk
i ≡

{
F i = 0

0 1 ≤ i ≤ (p− 3)/2
(mod πK), F ∈ Z/pZ×. (3.6)
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Note that although it was assumed that Fa,b,c is wild split in Section 5 of
[McC88], there is nothing in the definition of Y or the calculation show-
ing (3.5) and (3.6) that uses this assumption. It is only at the end of that
section that the assumption comes in.

Lemma 3.3 If ∑
k∈Ha,b,c

ukωk ≡
∑

k∈Ha,b,c

vkωk (modY πn+(p−3)/2)

then
uk ≡ vk (mod πn), k ∈ Ha,b,c.

Proof See pages 658–659 of [McC88]. �

Proposition 3.4 We have

df3

f3

≡
∑

k∈Ha,b,c

ckωk (modY p), ck ≡ 0 (mod π(p−5)/2)

and

df4

f4

≡
∑

k∈Ha,b,c

dkωk (modY p), dk ≡ −π(p−7)/2 bk
k3

(mod π(p−5)/2), (3.7)

where the bk are as in equation (3.5).

Proof We have

λ2
∗
df3

f3

≡ df1

f1

(modY p).

Since ζ∗ωk = ζ−kωk, we have λ∗ωk = λσωk, for some σ ∈ Gal(Kw/Qp). Hence
it follows from Lemma 3.3 and (3.5) that

λ2σck ≡ π(p−1)/2bk (mod π(p+1)/2).

Thus ck ≡ 0 (mod π(p−5)/2), as claimed. Similarly, we have λ3
∗(df4/f4) ≡

(df1/f1), so λ3σdk ≡ π(p−1)/2bk (mod π(p+1)/2). Furthermore, since ζσ = ζ−k,
it follows from our choice of λ that λσ/π ≡ −k (mod π) for 1 ≤ k ≤ p − 1,
so we get equation (3.7). �

Lemma 3.5

−
∑

k∈Ha,b,c

bk
k3

≡ F (q(aabbcc)3 + abcBp−3) (mod π),

where F is as in (3.6).
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Proof Let n = (p− 1)/2. Define

Γk(x1, . . . , xn) = det




1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...
xn−2

1 xn−2
2 . . . xn−2

n

xn−1+k
1 xn−1+k

2 . . . xn−1+k
n



.

Then an elementary linear algebra calculation using (3.6) gives

∑
k∈Ha,b,c

bk
k3

≡ FΓ3(H
−1
a,b,c)/Γ0(H

−1
a,b,c) (mod π).

Let Si(x1, . . . , xn) be the ith symmetric function. Then

Γ3 = Γ0(S
3
1 − 2S1S2 + S3).

This can be proved by the usual method: the determinant vanishes if xi = xj
for i �= j, or if there is a polynomial of degree n+ 2 vanishing on the xi, and
with no term of degree n−1, n, or n+1. Thus, if the roots of the polynomial
are x1, . . . , xn, α, β, then

α+ β + S1 = 0,

S2 + (α+ β)S1 + αβ = 0,

αβS1 + αS2 + βS2 + S3 = 0.

Eliminating α and β gives the condition S3
1 − 2S1S2 + S3 = 0. Now, we have

S1(H
−1
a,b,c) ≡ −q(aabbcc), (3.8)

S2(H
−1
a,b,c) ≡ 0, (3.9)

S3(H
−1
a,b,c) ≡ −Bp−3

3
(a3 + b3 + c3) ≡ −abcBp−3. (3.10)

It is explained in [McC88], Lemma 5.24, how equation (3.8) follows from
[Van20, 17]; equation (3.9) follows from parity considerations; and equa-
tion (3.10) follows from [Van20, 16], in exactly the same way as (3.8) follows
from [Van20, 17]. �

We now define p-adic discs in Y , to which we apply Lemma 3.2. Let X be
the sub-affinoid of Y defined by |t| ≤ 1 in the wild case and by |s| ≤ |πK | in
the tame case. Let Ew be the quadratic unramified extension of Kw. If Fa,b,c
is wild, X is isomorphic to a union of two closed discs, which are defined over
Kw in the split case and over Ew in the nonsplit case. Furthermore, T = t is
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a parameter on each disc. If Fa,b,c is tame, then X is isomorphic to a union
of p closed discs defined over Kw, and T = s/πK is a parameter on each disk.
For proofs of these facts we refer the reader to[McC88] (where T = s′ in the
tame case). We denote by Z any of the discs that are components of X, with
parameter T . We can write

fi|X = Ciui(T )vi(T
p)gi(T )

p, i = 1, 2, 3, 4,

where ui and vi are unit power series with constant term 1 and integer co-
efficients, ui has no terms in T p, and gi is a monic polynomial with integer
coefficients. Furthermore, these conditions uniquely determine the ui, vi and
gi. Then

dfi
fi

≡ dui
ui

(modZ p). (3.11)

For a p-adic field H we denote by UH [[T ]] the power series in OH [[T ]] which
are congruent to 1 modulo the maximal ideal in OH [[T ]].
Theorem 3.6 Let Z be any of the discs that are components of X and let T
be a parameter on Z. Then

ui = 1 + π(p+3)/2−iDiT +O(π(p+5)/2−iT ), (3.12)

where |Di| ≤ 1, i = 1, 2, 3, 4. Moreover, |D1| = 1, and under the hypotheses
of Theorem 1.4, |D4| = 1 and

D4

D1

≡ q(aabbcc)3 + abcBp−3.

Finally, ui for i = 1, 2, 3 are defined over Ew, and

u4 ∈ 1 + π
(p−5)/2
K D4TUEw [[T ]] + π

(p+1)/2
K π−3

L ED1TUFw [[T ]],

where E ∈ Z/pZ× is independent of the triple (a, b, c) and Fw is the quadratic
unramified extension of Lw.

Proof In both wild and tame cases we have ωk ≡ πD dT (modZ π2) for
all k ∈ Ha,b,c, with D ∈ Z/pZ× independent of k. This follows from our
normalization (3.4), since in the tame case we have

s = πT, (3.13)

and in the wild case it follows from [McC88, (5.6)], where it is shown that
the expansion of s in terms of t on either of the discs in X is

s2 =
−q(aabbcc)2b

ac
+ π

2b

ac
(tp − t) +O(π2). (3.14)
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The statements about D1 follow from (3.2), (3.13) (in the tame case) and
(3.14) (in the wild case), since f1 = x. The statement about D2 was proved
in [McC88, Theorem 5.13]. Although this theorem is stated only for the wild
split case, the consequence (3.12) is easily seen to hold also in the other cases
(the part of Theorem 5.13 specific to the wild split case translates into the
statement |D2| = 1 in the current notation, and we do not need it here).
The statements about D3 and D4 follow from Proposition 3.4, Lemma 3.5,
and (3.11). The statement about the ratio D4/D1 follows from (3.5), the case
i = 0 of (3.6), (3.7), and Lemma 3.5, taking note of the normalization (3.4)
and the fact that ds ≡ unit × πdT (modY π2). The statements about the
fields of definition follow from the fact that fi is defined over K for i = 1, 2, 3
and f4 is defined over L, and that the discs Z are always defined over Ew. The
final statement follows from considerations of ramification theory. Locally, we
have ηp−3 = 1+aπp−3 modulo pth powers, so the (upper) conductor of Lw/Kw
is 3. Now, it follows from the properties of the Pi that uσ−1

4 ≡ u1 modulo
OFw [[T ]]

×pUFw [[T
p]], and, since u1 ∈ 1+π(p+1)/2TD1UFw [[T ]], this implies the

final statement with E such that (σ − 1)π−3
L ≡ E−1 (mod πL). �

4 Computation of the Cassels pairing

Recall the local descent maps

δi = ιP1 × · · · × ιPi
: J(Kw) → (K×

w /K
×p
w )i

described in Section 2. We start by noting a couple of properties that follow
from the choice of Pi made in Section 2. First, we have

ιPi
◦ λ = ιPi−1

, i = 2, 3, 4. (4.1)

Second, for i = 1, 2, 3 we have, from eigenspace considerations,

ιPi
(J(Kw)(k)) ⊂ V (k − i+ 1). (4.2)

Let A ⊂ J(Kw) be the subgroup generated by divisors supported on the discs
|T | ≤ |πK | in X. Let

V [i, j] =
⊕
i≤k≤j

V (k).

Note that V (i) = 0 for i > p.

Proposition 4.1 We have

ιPi
(A) ⊂ V

[
(p+ 5)/2− i, p

]
, i = 1, 2, 3. (4.3)
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If Fa,b,c is wild split, we have

ιPi
(J(Kw)) ⊂ V

[
(p+ 1)/2− i, p

]
, i = 1, 2, 3. (4.4)

If Fa,b,c is wild nonsplit or tame, we have

ιPi
(J(Kw)) ⊂ V

[
(p+ 3)/2− i, p

]
, i = 1, 2, 3. (4.5)

Furthermore, in the case i = 1, the inclusions in (4.3) and (4.5) are equalities.

Proof The inclusions in (4.3) follow immediately from Theorem 3.6, as does
the claim that the inclusion is equality in the case i = 1. Now Faddeev [Fad61]
proved that

im ιP1 =

{
V ((p− 1)/2)⊕ V [(p+ 3)/2, p] if Fa,b,c is wild split,

V [(p+ 1)/2, p] otherwise.

This implies the statements (4.4) and (4.5) in the case i = 1, and also that
the image of A in J(Kw)/λJ(Kw) has codimension 1, and the eigenvalue of
the quotient is κ(p−1)/2 in the wild split case and κ(p+1)/2 in the other cases.
The remaining statements now follow from (4.1), (4.2), and (4.3). �

Proposition 4.2 If Fa,b,c is wild nonsplit or tame, then

δ2(J(Kw)) = V
[
(p+ 1)/2, p

]2
.

Proof From (4.1) with i = 2 we have

im δ2 ∩ (K×/K×p)× 1 = im δ1 × 1 = V
[
(p+ 1)/2, p

] × 1 (4.6)

Furthermore, given u ∈ V [(p+3)/2, p], we can find a ∈ A such that ιP1(a) = u,
and ιP2(a) ∈ V [(p+ 1)/2, p] ⊂ im ιP1 . Thus, modifying a by λJ(Kw), we can
choose it so that ιP2(a) = 1. Hence

im δ2 ⊃ 1× V
[
(p+ 3)/2, p

]
. (4.7)

Now it follows from local duality that im δ2 must be maximal isotropic with
respect to the cup product pairing on (K×/K×p)2 = H1(K, J [λ2]) induced by
the Weil pairing on J [λ2]. Since λ2 = λ̂2, the Weil pairing is skew symmetric.
Thus the pairing on (K×/K×p)2 is a nonzero multiple of ((a1, b1), (a2, b2)) �→
(a1, b2)w(b1, a2)

−1
w , where ( , )w denotes the Hilbert symbol at w. The only

maximal isotropic subgroup satisfying (4.6) and (4.7) is the one given in the
statement of the proposition. �

Define a subspace Vglobal ⊂ V by

Vglobal =
⊕

2≤i≤p−3
i even

V (i).
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Proposition 4.3 Assume p ≥ 11 and Fa,b,c is wild nonsplit or tame. There
exists a point x ∈ A such that ιP1(x) generates V ((p+5)/2) and ιPi

(x) ∈ Vglobal

for i = 2, 3.

Proof It follows from Proposition 4.1 that A, regarded as a Zp[ζ]-submodule
of J(Kw), has codimension at most 1. Hence δ3(A) has codimension ≤ 3 as a
Fp-vector space in δ3(J(Kw)). By Proposition 4.1 we can choose x ∈ A such
that ιP1(x) generates V ((p+ 5)/2). This condition leaves freedom to modify
x by anything in λJ(Kw), which would change δ3(x) by anything in im δ2.
Thus, modifying x as needed, we can ensure that ιPi

(x) ∈ Vglobal, i = 2, 3. The
number of degrees of freedom in performing this modification is equal to the
dimension of im δ2 ∩ Vglobal, which is at least 4 if p ≥ 11, by Proposition 4.2.
Thus we can ensure that x remains in A when making the modification. �

Computation of the Cassels pairing for Theorem 1.2 We now use
Proposition 2.1 to show that the pairing 〈 , 〉2 is trivial under the hypotheses
of Theorem 1.2. In the next section we explain how this implies the theorem.

Denote by @i : Sλi → J(Kw)/λ
iJ(Kw) the localization map. We claim

that, under the hypotheses of Theorem 1.2, ιP1(@1(Sλ)) ⊂ V [(p + 3)/2, p] or
ιP1(@1(Sλ)) ⊂ V ((p+1)/2)⊕V [(p+5)/2, p]. Now, V (i) pairs nontrivially with
V (j) under the Hilbert pairing if and only if i+ j ≡ p (mod p− 1). Thus, it
follows from our claim and from (4.2) that ιP3(@3(J(Kw)) pairs trivially with
ιP1(@1(J(Kw)).

To see the claim, note that if hypothesis (a) of Theorem 1.2 is satis-
fied, namely that Fa,b,c is wild split and p ≡ 3 (mod 4), then, by [Fad61],
ιP1(@1(Sλ)) ⊂ V ((p− 1)/2)⊕ V [(p+ 3)/2, p]. Furthermore, we can eliminate
V ((p− 1)/2) as a possibility, because @1 factors through H1(K(p)/K, µp) →
H1(Kw, µp). Since (p − 1)/2 is odd, it follows from (2.4) that @1 can have
nontrivial image in V ((p − 1)/2) only if C((p − 1)/2) is nontrivial, which
would imply p | B(p+1)/2. This never happens if p ≡ 3 (mod 4).

If hypothesis (b) of Theorem 1.2 is satisfied, namely that Fa,b,c is wild
nonsplit or tame and the image of U in either V ((p + 1)/2) or V ((p + 3)/2)
is trivial, then the claim follows immediately from (4.5).

The proof of Theorem 1.4 uses the following lemma.

Lemma 4.4 Suppose p ≥ 5 is regular, and let L be as in (2.2). Then

1. the map H1(K(p)/L, µp) → H1(Lw, µp) is injective

2. the norm map NL/K : O×
L → O×

K is surjective

3. H1(K(p)/L, µp)
G(i) = 0 if i is odd and i �= 1, or if i = p− 1.
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Proof Let HK (resp. HL) be the Hilbert class field of K (resp. L). Since
L/K is unramified outside p, and there is only prime of L above p, it follows
that Gal(HL/L)/(σ − 1) 	 Gal(HK/K). Therefore p does not divide the
order of the class group CL 	 Gal(HL/L). The injectivity statement follows,
since anything in the kernel would generate an unramified Kummer extension
of L of degree p. Furthermore, every unit of K is a local norm everywhere
except possibly at the prime above p, and therefore is a local norm there also
by the product formula. Thus it is a global norm. The surjectivity of the
norm map follows by a standard argument using Gal(L/K) cohomology of
the sequences

1 → O×
L → L× → PL → 1 and 1 → PL → IL → CL → 1,

where IL and PL are the groups of ideals and principal ideals respectively.
Finally, by (2.4),

H1(K(p)/K, µp) = O′×
K /O′×p

K and H1(K(p)/L, µp) = O′×
L /O′×p

L .

Moreover, the cokernel of O×
K/O×p

K in (O×
L/O×p

L )G is H2(L/K, µp) 	 Z/pZ,
with Gal(K/Q) acting via κp−3, since it acts on G via κ3. Since p− 3 is even
and (O×

K/O×p
K )(i) = 0 if i is odd and i �= 1, or if i = p−1, the third statement

of the lemma follows. �

Proof of Theorem 1.4 We exhibit a ∈ Sλ3 and b ∈ Sλ which pair non-
trivially under the Cassels pairing.

Since p is regular, the exact sequence [McC88, 7.3] identifies U with
O×
K/O×p

K . Thus Sλi ⊂ (O×
K/O×p

K )i for i ≤ 3. The Selmer group is the sub-
group obtained by imposing the local conditions at w. Since (p+1)/2 is even,
we can choose an element b ∈ O×

K/O×p
K which generates V ((p + 1)/2), and b

satisfies the local condition by Proposition 4.1, so b ∈ Sλ.
As for a, by Proposition 4.3 there exists aw = (aw,1, aw,2, aw,3) = δ3(x),

x ∈ A, such that aw,1 generates V ((p + 5)/2) and aw,2, aw,3 ∈ Vglobal. Using
a suitable projector, we may further assume that x is an eigenvector for
the action of ∆. Choose eigenvectors ai ∈ O×

K/O×p
K specializing to aw,i for

i = 1, 2, 3 and define a ∈ Sλ3 by a = (a1, a2, a3).
Now, by Lemma 4.4, λ2

∗a = a1 ∈ V ((p+5)/2) is the norm of a global unit
ε in O×

L , and by Proposition 2.3, the Cassels pairing of a and b is the Hilbert
pairing (cw, bw), where cw ∈ K×/K×p is an eigenvector and

cw = ιP4(x)
−1ηN ′ε in L×

w/L
×p
w , (4.8)

where η ∈ H1(K(p)/L, µp)
G. We can identify the precise eigenspace in which

cw lies as follows. Since aw,1 = ιP1(x), and since P1 is fixed by ∆, x has
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eigenvalue κ(p+5)/2. Then, since λ has eigenvalue κ (modulo λ5), it follows
that δ3(x), and hence cw, have eigenvalue κ(p+5)/2−3 = κ(p−1)/2. Thus we may
assume without loss of generality that cw, η, N

′ε, and ιP4(x) are eigenvectors
for a lift ∆̃ of ∆ = Gal(Kw/Qp) to Gal(Lw/Qp), with eigenvalue κ(p−1)/2.
Since η ∈ H1(K(p)/L, µp)

G, its projection onto an eigenspace (L×
w/L

×p
w )(i)

with i > 1 odd is trivial, by Lemma 4.4. This applies in particular to i =
(p− 1)/2, so that the image of η in L×

w/L
×p
w is trivial.

Under the Hilbert pairing the κ(p−1)/2 and κ(p+1)/2 eigenspaces of K×
w /K

×p
w

pair nontrivially. Thus, to prove that the pairing (cw, bw) is nontrivial, it
suffices to show that cw is not a pth power, and for that it suffices to show
that its image in L×

w/L
×p
w is nontrivial.

Since x ∈ A, we may choose a divisor D supported on |T | ≤ |π| such that
aw,i = fi(D), 1 ≤ i ≤ 3. Since D is supported on |T | ≤ |π|, we have

u = f4(D) ≡ u4(D) (mod L×p
w (1 + πpOLw)).

From the Galois properties of the Pi, we have

u ∈ (L×
w/L

×p
w )((p− 1)/2)), (σ − 1)u = v, (4.9)

where v is the image in L×
w/L

×p
w of a generator of V ((p+5)/2). Since p ≥ 19,

(p + 5)/2 is less than p − 3, and thus v �= 0. Thus the subspace of L×
w/L

×p
w

satisfying the conditions (4.9) is two-dimensional, with generators u1 and
u2, where u1 is the image of a generator of V ((p − 1)/2) with expansion

u1 = 1 + π
(p−1)/2
K +O(π

(p+1)/2
K ), and u2 ∈ (L×

w/L
×p
w )((p− 1)/2) has expansion

u2 = 1 + π
(p+5)/2
K π−3

L + O(π
(p+5)/2
K ). Thus u = uα1u

β
2 for some α, β ∈ Z/pZ.

Expanding the binomial series, we get

u = 1 + απ
(p−1)/2
K + βπ

(p+5)/2
K π−3

L +O(πp−1
K ). (4.10)

We can now use Theorem 3.6 to evaluate u4 at D. Comparing appropriate
coefficients (note that D is supported on |T | ≤ |π|), we see that

α

β
=

D4

ED1

=
1

E
γ(a, b, c) =

1

E
(q(aabbcc)3 + abcBp−3). (4.11)

Now, we may replace (a, b, c) by any (a′, b′, c′) ≡ (ta, tb, tc) (mod p), for t ∈
F×
p . It is easily seen, using the property q(xy) ≡ q(x)+q(y), that γ(ta, tb, tc) ≡

t3γ(a, b, c). Thus, from (4.11), we see that by varying t appropriately we may
ensure that u, and hence cw, varies in L×

w/L
×p
w , and, in particular, takes on

nonzero values. Hence there exists a choice of t such that the pairing is
nontrivial for the curve Fa′,b′,c′ . However, this curve is isomorphic to Fa,b,c,
and hence the pairing must be nontrivial in that case as well. �
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5 Shafarevich–Tate groups

The proofs of Theorem 1.2 and Theorem 1.5 follow from the computations of
the Cassels–Tate pairing by means of the following proposition.

Proposition 5.1 For all positive integers m and n, the restriction of the
Cassels–Tate pairing induces a perfect pairing(

X[λm]/(λnX[λn+m])
)
×

(
X[λn]/(λmX[λn+m])

)
−→ Q/Z.

Let Xdiv denote the maximal divisible subgroup of X, i.e. x ∈ Xdiv if
and only if for every nonzero integer n there exists y ∈ X such that x = ny.
Let Xred denote the quotient group X/Xdiv. Note that:

Lemma 5.2 Xdiv is a divisible group in the usual sense that multiplication
by any nonzero n ∈ Z is surjective on it.

Proof The argument is standard: since X[m] is finite for all nonzerom ∈ Z,
the groups NX[Nm], N > 0, stabilize for sufficiently large N . Thus for
every m there is an integer N(m) such that if an element of X[m] is divisible
by N(m) it is infinitely divisible. Now if x ∈ Xdiv[m] and n > 0, choose
y ∈ X[N(nm)nm] such that N(nm)ny = x. Then y′ = N(nm)y is in
Xdiv[nm] and ny′ = x. �

Note that since ζ is an automorphism of X it preserves Xdiv, and hence so
does Z[ζ]. Furthermore, since λp−1 is a unit times p in Z[ζ], Xdiv is divisible
by λn for any positive n.

Lemma 5.3 The exact sequence

0 −→ Xdiv −→ X −→ Xred −→ 0

induces by restriction an exact sequence

0 −→ Xdiv[λ
n] −→ X[λn] −→ Xred[λ

n] −→ 0

for any positive integer n.

Proof Only the surjectivity is in question. Let x ∈ Xred[λ
n]. Lift x to

y ∈ X. Then λny = z ∈ Xdiv. By Lemma 5.2, we can find w ∈ Xdiv such
that λnw = z = λny. But then y − w ∈ X[λn] and y − w reduces to x in
Xred. �

It is well known that Xred[p
∞] is a finite group and that the Cassels–Tate

pairing induces a perfect pairing

[· ·] : Xred[p
∞] × Xred[p

∞] −→ Q/Z.

We now have the following lemma:
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Lemma 5.4 The annihilator of Xred[λ
m] with respect to the latter pairing

equals λmXred[p
∞], for all positive integers m.

Proof It is clear from the definition of the pairing given in [McC88], for
example, and from the functoriality properties of the Weil pairing, that
[ζa, a′] = [a, ζ−1a′]. Hence, if λ̂ = ζ−1 − 1, then λ̂mXred[p

∞] annihilates
Xred[λ

m]. Since λ̂/λ is a unit in Z[ζ], we have λ̂mXred[p
∞] = λmXred[p

∞].
So the kernel H on the right factor of the restricted pairing

Xred[λ
m]× Xred[p

∞] −→ Q/Z

contains λmXred[p
∞]. Note that the kernel on the left factor of the latter

pairing is trivial. Therefore, the cardinalities of Xred[λ
m] and Xred[p

∞]/H
are equal. But

|Xred[p
∞]| = |Xred[λ

m]| |λmXred[p
∞]|,

hence H = λmXred[p
∞]. �

Lemma 5.5 For all positive integers m and n, the restriction of the Cassels–
Tate pairing induces a perfect pairing(

Xred[λ
m]/(λnXred[λ

n+m])
)

×
(
Xred[λ

n]/(λmXred[λ
n+m])

)
−→ Q/Z.

Proof By Lemma 5.4, the annihilator of Xred[λ
m] in Xred[λ

n] equals

λmXred[p
∞] ∩ Xred[λ

n] = λmXred[λ
n+m],

and the assertion follows. �

Proof of Proposition 5.1 By Lemma 5.5, it suffices to show that for all
m and n the groups X[λm]/(λnX[λn+m]) and Xred[λ

m]/(λnXred[λ
n+m]) are

isomorphic. By Lemma 5.3, we have a commutative diagram

0 → Xdiv[λ
n+m] −→ X[λn+m] −→ Xred[λ

n+m] → 0�α = λn
�β = λn

�γ = λn

0 → Xdiv[λ
m] −→ X[λm] −→ Xred[λ

m] → 0

where the horizontal sequences are exact. By the Snake Lemma, we get an
exact sequence

0 → Ker(α) → Ker(β) → Ker(γ) →
→ Coker(α) → Coker(β) → Coker(γ) → 0.

By Lemma 5.2, we have Coker(α) = 0, hence Coker(γ) is isomorphic to
Coker(β), and this completes the proof. �
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Proof of Theorem 1.2 By the structure theorem for torsion modules over
Dedekind domains we have a Z[ζ]-module decomposition

X[λ3] 	 (Z[ζ]/(λ))t1 ⊕ (Z[ζ]/(λ2))t2 ⊕ (Z[ζ]/(λ3))t3 ,

where t1, t2 and t3 are nonnegative integers. The computations in the previ-
ous section show that the pairing (obtained by restricting the Cassels–Tate
pairing)

X[λ2] × X[λ] → Q/Z

is trivial. By Proposition 5.1 (for m = 2 and n = 1), we get that the groups
X[λ2]/(λX[λ3]) and X[λ]/(λ2X[λ3]) are both trivial. But then

(Z[ζ]/(λ))t1 ⊕ (Z[ζ]/(λ))t2 ⊕ (Z[ζ]/(λ))t3 	 X[λ] = λ2X[λ3] 	 (Z[ζ]/λ)t3

so t1 = t2 = 0, which proves the claim. �

Proof of Theorem 1.5 Let

X[λ4] 	 (Z[ζ]/(λ))a ⊕ (Z[ζ]/(λ2))b ⊕ (Z[ζ]/(λ3))c ⊕ (Z[ζ]/(λ4))d.

If we show that d = 0, then λ3 annihilates X[λ4], therefore X[λ4] = X[λ3].
By induction, this implies X[p∞] = X[λ∞] = X[λ3]. So assume d ≥ 1.
Since the Cassels–Tate pairing on X[λ3]×X[λ] is nontrivial, Proposition 5.1
implies that X[λ3]/(λX[λ4]) has dimension ≥ 2 over Fp. Now

λX[λ4] 	 (Z[ζ]/(λ))b ⊕ (Z[ζ]/(λ2))c ⊕ (Z[ζ]/(λ3))d.

Counting Fp-dimensions, we get 6−(b+2c+3d) ≥ 2, therefore b+2c+3d ≤ 4.
This implies d = 1 and c = 0. Therefore,

X[λ4] 	 (Z[ζ]/(λ))a ⊕ (Z[ζ]/(λ2))b ⊕ (Z[ζ]/(λ4)).

This implies that

(Z[ζ]/(λ))2 = λ2(Z[ζ]/(λ3))2 	 λ2X[λ3] ⊆ λ2X[λ4] 	 Z[ζ]/(λ2),

a contradiction. �

6 Tame reduction

Although it is not strictly necessary for Theorem 1.6, we take the opportunity
to prove a general lemma on tame reduction, since it clears up some confusion
in the literature. In [Lim95], an attempt was made to improve the result of
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[McC88] on the existence of nontrivial elements in X[λ] in the wild split case,
under the additional hypothesis that the Jacobian of the Fermat curve in ques-
tion is nonsimple. However, as Lemma 6.1 shows, nonsimple Jacobian and
wild split reduction over Zp[ζ] are incompatible properties, so the Mordell–
Weil rank estimates given in the last section of [Lim95] are incorrect. As far
as we can tell, the problem lies in the use of the function q(x) which com-
putes the reduction type (see the introduction). Here as well as in [McC88],
q is evaluated on triples (a, b, c) of integers such that 0 < a, b, a + b < p and
a+ b+ c = 0. In [Lim95] however, q is evaluated on triples (a, b, c) such that
0 < a, b, a + b < p and a + b + c = p. While it does not make any difference
which of the two types of triples one chooses to define the curve Fa,b,c, it does
make a difference which type of triple one uses to evaluate q and hence the
reduction type. We have the following lemma:

Lemma 6.1 Let (a, b, c) be such that Ja,b,c is nonsimple. Then Fa,b,c has tame
reduction over Zp[ζ].

Proof By [KR78], Ja,b,c is nonsimple if and only if p ≡ 1 (mod 3) and Fa,b,c
is isomorphic to F1,r,−(r+1), where r2+r+1 = 0 in Fp. By definition of q(x), it
therefore suffices to show that (r + 1)(r+1)(p−1) − rr(p−1) ≡ 0 (mod p2). Since
6 divides p− 1, it suffices to show that

(r + 1)6(r+1) − r6r ≡ 0 (mod p2).

Let k be an integer such that r2 + r + 1 = pk. Then (r + 1)2 = pk + r.
Therefore,

(r + 1)6 = (pk + r)3 ≡ r3 + 3r2pk (mod p2).

Hence (r+ 1)6(r+1) ≡ (r3 + 3r2pk)r+1 ≡ (r3(r+1) + 3r2pk(r+ 1)r3r) (mod p2).
Now note that r3rr2(r + 1) ≡ −r (mod p) since r is a cube root of unity
modulo p, so that 3r2pk(r+ 1)r3r ≡ −3rpk (mod p2). Hence, (r+ 1)6(r+1) ≡
(r3r+3 − 3rpk) (mod p2). Therefore,

(r + 1)6(r+1) − r6r ≡ (r3r(r3 − r3r)− 3rpk) (mod p2).

Since r3 = pk(r−1)+1, we get r3r ≡ (rpk(r−1)+1) (mod p2), so r3−r3r ≡
−pk(r − 1)2 (mod p2). Hence,

(r + 1)6(r+1) − r6r ≡ −pk(r3r(r − 1)2 + 3r) (mod p2).

Since r3r(r − 1)2 + 3r ≡ 0 (mod p), this proves the proposition. �

Remark A less computational proof of Lemma 6.1 was suggested to us by
Dino Lorenzini. The argument goes as follows: To show that the reduction is
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tame, it suffices, by work of McCallum, to show that the degree of the mini-
mum extension M/Kunr

w such that Ja,b,c has good reduction over M is prime
to p. It is known that this minimum degree is at most 2g + 1. Now suppose
Ja,b,c is isogenous to the product of two abelian varieties of smaller dimension.
Then M is the compositum of the corresponding minimum extensions for the
factors. Each of the latter extensions has degree strictly less than p, so the
degree of their compositum is prime to p.

Proof of Theorem 1.6 By Lemma 6.1, the reduction is tame in this case.
By Theorem 1.4 and Proposition 5.1, the Fp-dimension of X[λ]/(λ3X[λ4])
is ≥ 2. In particular, the Fp-dimension of X[λ] is ≥ 2. Since p is regular, the
results of Faddeev ([Fad61]) show that the Selmer group Sλ is 3-dimensional
over Fp. On the other hand, Gross and Rohrlich ([GR78]) have shown that the
Mordell–Weil rank of J7,1,−8 over Q is nonzero. Therefore, the rank equals 1
and X[λ] is 2-dimensional over Fp. By Theorem 1.2 it follows that X[λ3] has
rank 2 over Z[ζ]/(λ3). Theorem 1.5 then implies that X[p∞] 	 (Z[ζ]/(λ3))2.
The statement about quadratic points on F7,1,−8 and on the Fermat curve
X19+Y 19+Z19 = 0 follows immediately from Corollary 2.2 and Theorem 1.3
of [Tze02]. �
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Cascades of projections from
log del Pezzo surfaces

Miles Reid Kaori Suzuki

To Peter Swinnerton-Dyer, in admiration

Abstract

One of the best-loved tales in algebraic geometry is the saga of the
blowup of P2 in d ≤ 8 general points and its anticanonical embedding.
If a del Pezzo surface F with log terminal singularities has a large
anticanonical system |−KF |, it can likewise be blown up many times
to produce cascades of del Pezzo surfaces; as in the ancient fable, a
blowup can be viewed as a projection from a bigger weighted projective
space to a smaller one, leading in nice cases to weighted hypersurfaces
or other low codimension Gorenstein constructions. The simplest ex-
amples already give several beautiful cascades, that we exploit as test
cases for practice in the study of various kinds of projections and un-
projections. We believe that these calculations will eventually have
more serious applications to Fano 3-folds of Fano index ≥ 2, involving
1001 lovely and exotic adventures.

1 The story of F3

Once upon a time, there was a surface F = F3, known to all as the cone
over the twisted cubic, or as P(1, 1, 3) = Proj k[u1, u2, v], where wtu1, u2 =
1, wt v = 3. The anticanonical class of F is −KF = O

F3
(5), so that its

anticanonical ring R(F,−KF ) is the fifth Veronese embedding or truncation
k[u1, u2, v]

(5). We see that this ring is generated by

x1, . . . , x9 = S5(u1, u2), S
2(u1, u2)v in degree 1,

y1, y2 = u1v
3, u2v

3 in degree 2,
z = v5 in degree 3,

where, as usual, we write Sd(u1, u2) = {ud
1, u

d−1
1 u2, . . . , u

d
2} for the set of

monomials of degree d in u1, u2.

227
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Note that the two generators y1, y2 in degree 2 are essential as orbifold
coordinates or orbinates at the singular point. This point is simple and well
known, but we spell it out, as it is essential for the enjoyment of our narrative:
at P = Pv = (0, 0, 1) ∈ P(1, 1, 3), only v 	= 0. We take a cube root ξ = 3

√
v,

thus introducing a Z/3 Galois extension of the homogeneous coordinate ring.
The homogeneous ratios u1/ξ, u2/ξ are coordinates on a copy of C2, which is
a Z/3 cover of an affine neighbourhood of P ; hence P is a quotient singularity
of type 1

3
(1, 1). In our truncated subring R(F,−KF ), only z 	= 0 at P , and

the same orbinates are provided by the homogeneous ratios y1/z
2/3, y2/z

2/3.
In the projective embedding given by R(F,−KF ), since the orbinates are
naturally forms of degree 2, we think of P as a quotient singularity of type
1
3
(2, 2).

There are many ways of seeing that the Hilbert function of R(F,−KF ) is
given by

Pn = h0(F,−nKF ) = 1 +
25

3

(
n+ 1

2

)
−

{
1
3

if n ≡ 1 mod 3

0 otherwise

for all n ≥ 0, and thus the Hilbert series is

PF (t) :=
∑
Pnt

n =
1 + 7t+ 9t2 + 7t3 + t4

(1− t)2(1− t3) .

You can do this as an exercise in orbifold RR ([YPG], Chapter III); or another
way is to multiply the Hilbert series 1/(1− s)2(1− s3) of k[u1, u2, v] through
by (1 − s5)2(1 − s15), truncate it to the polynomial consisting only of terms
of degree divisible by 5, and substitute s5 = t.

Now let S = S(d) → F be the blowup of F in d general points Pi, for d ≤ 8.
Write Ei for the −1-curves over Pi. Since KS = KF +

∑
Ei, the anticanonical

ring R(S,−KS) consists of elements of R(F,−KF ) of degree n passing n times
through Pi. Thus each point imposes one condition in degree 1, 3 in degree 2,
etc. Therefore the Hilbert series of S is

PS(t) = PF (t)− d× t

(1− t)3 =
1 + (7− d)t+ (9− d)t2 + (7− d)t3 + t4

(1− t)2(1− t3) .

In particular S(d) has anticanonical degree 25−3d
3

= (8−d)+ 1
3
. The first cases

are listed in Table 1.1; the first three models suggested by the Hilbert function
work without trouble. For S(6), the Hilbert function requires 3 generators in
degree 1, 2 in degree 2, and 1 in degree 3, and the corresponding Hilbert
numerator is

(1− t)3(1− t2)2(1− t3)PS(t) = 1− 2t3 − 3t4 + 3t5 + 2t3 − t8.
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d = 8 1/3 PS(t) = 1+t5

(1−t)(1−t2)(1−t3)
S10 ⊂ P(1, 2, 3, 5)

d = 7 4/3 PS(t) = 1+2t2+t4

(1−t)2(1−t3)
S4,4 ⊂ P(1, 1, 2, 2, 3)

d = 6 7/3 PS(t) = 1+2t2−2t3−t5

(1−t)3(1−t3)
SPf ⊂ P(13, 22, 3)

d = 5 10/3 PS(t) = 1+t2−4t3+t4+t6

(1−t)4(1−t3)
codim 4

d = 4 13/3 PS(t) = 1−t2−4t3+4t4+t5−t7

(1−t)5(1−t3)
codim 5

Table 1.1: The cascade above S10 ⊂ P(1, 2, 3, 5)

This indicates that S(6) ⊂ P(13, 22, 3) should be defined (in coordinates
x1, x2, x3, y1, y2, z) by the Pfaffians of a 5× 5 skew matrix

A(S(6)) =


x1 x2 b14 b15

x3 b24 b25
b34 b35

z

 of degrees


1 1 2 2

1 2 2
2 2

3

 . (1.1)

We see that this works: thus the 3 Pfaffians involving z give xiz = · · · , so
that at the point Pz = (0, . . . , 0, 1) the three xi are eliminated as implicit
functions, and Pz is a 1

3
(2, 2) singularity with orbinates y1, y2.

Remark 1.1 For S(5) and S(4), innocently putting in only the generators
required by the Hilbert series suggests the similar codimension 3 Pfaffian
models of Table 1.2. However, experience says that they cannot possibly

d = 5 1−4t3−t4+t4+4t5−t8

(1−t)4(1−t2)(1−t3)
S(5) ⊂ P(14, 2, 3)

(
1 1 1 1

2 2 2
2 2

2

)
d = 4 1−t2−4t3+4t4+t5−t7

(1−t)5(1−t3)
S(4) ⊂ P(15, 3)

(
1 1 1 2

1 1 2
1 2

2

)

Table 1.2: Candidate Pfaffian models that don’t work

work: each of these is a mirage of a type encountered many times in the
course of previous adventures. For one thing, there is nowhere for a variable
of degree 3 to appear in the matrix, so that its Pfaffians define a weighted
projective cone with vertex (0, . . . , 0, 1) over a base C ⊂ P(14, 2) (respectively,
C ⊂ P4) that is a projectively Gorenstein curve C with KC = O(2); the cone
point is not log terminal. For another, the anticanonical ring needs two
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generators of degree 2 to provide orbinates at the singularity of type 1
3
(2, 2).

The conclusion is that we have not yet put in enough generators for the graded
ring (or, in other contexts, that the variety we seek does not exist). Mirages
of this type appear all over the study of graded rings, as discussed in 3.3.

As we see below, S(d) is an explicit construction from F3, and has pro-
jections down to S10 ⊂ P(1, 2, 3, 5) or S4,4 ⊂ P(1, 1, 2, 2, 3), so that we can
find out anything we want to know about the rings R(S,−KS) by working in
birational terms, either from above by projecting from F3, or from below by
unprojecting from one of the low codimension cases. We first relate without
proof what happens. Listen and attend!

Consider S = S(5) first. First, R(S,−KS) has two generators y1, y2 and
one relation in degree 2; the Hilbert series on its own cannot detect this,
because the relation masks the second generator. Once you know about
the additional generator, the anticanonical model of S(5) is a codimension 4
construction S(5) ⊂ P(14, 22, 3), with Hilbert numerator

(1− t)4(1− t2)2(1− t3)PS(t) = 1− t2 − 4t3 + 8t5 − 4t7 − t8 + t10;

however, there is still more masking going on: although the Hilbert series
only demands one relation in degree 2 and 4 in degree 3, there are in fact also
4 relations and 4 syzygies in degree 4, and the ring has the 9 × 16 minimal
resolution

OS ← OP ← OP(−2)⊕ 4O(−3)⊕ 4O(−4)

← 4OP(−4)⊕ 8O(−5)⊕ 4O(−6)← · · · (sym.) (1.2)

The syzygy matrixes in this complex have 4× 4 blocks of zeros (of degree 0).
We represent this by writing out the Hilbert numerator as the expression

1 − t2 − 4t3 − 4t4 + 4t4 + 8t5 + 4t6 − 4t6 − 4t7 − t8 + t10,

where the spacing is significant. Likewise, S(4) is the codimension 5 construc-
tion S(4) ⊂ P(15, 22, 3), with 14× 35 resolution represented by

1 − 3t2 − 6t3 − 5t4 + 2t3 + 12t4 + 15t5 + 6t6

− 6t5 − 15t6 − 12t7 − 2t8 + 5t7 + 6t8 + 3t9 − t11. (1.3)

These assertions can be justified either by viewing S(d) as projected from
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F = F3, or as unprojected from S(d+1). For convenience, we do S(5) from
below, and S(4) from above (but we could do either case by the other method,
with slightly longer computations).

Projecting from a general P ∈ S(5) blows P up to a −1-curve l = P1 con-
tained in the Pfaffian model of S(6) ⊂ P(13, 22, 3). Inversely, S(5) is obtained
as the Kustin–Miller unprojection of l ⊂ S(6) (see Papadakis and Reid [PR]):
the ring of S(5) is generated over that of S(6) by adjoining 1 unprojection vari-
able x = x4 of degree kS − kl = −1− (−2) = 1, with unprojection equations
x ·gi = · · · , for the generators gi of Il. Now l is clearly a complete intersection
of 4 hypersurfaces of degrees 1, 2, 2, 3 (it is x3 = y1 = y2 = z = 0 up to a
coordinate change). The ring of S(5) thus has equations the old equations of
S(6) of degrees 3, 3, 4, 4, 4 (the Pfaffians (1.1) defining A(S(6))), together with
4 unprojection equations of degrees 2, 3, 3, 4. The numerical shape of the res-
olution (1.2) comes from this and Gorenstein symmetry. The same result can
be obtained by applying the Kustin–Miller construction directly: the projec-
tive resolution of the ring of S(6) is the Buchsbaum–Eisenbud complex L• of
the matrix A(S(6)), and that of l is the Koszul complex M• of the regular
sequence defining l. Then R(S(5)) arises from a homomorphism L• → M•
extending the map OS(6) � Ol. For details, see Papadakis [P2].

We justify S(4) in the other direction, by projecting down from F . We
can choose coordinates to put a general set of 4 points in the form

{P1, . . . , P4} ⊂ F = P(1, 1, 3) given by f4(u1, u2) = v = 0.

The anticanonical ring of the 4-point blowup S(4) is then generated by

x1, . . . , x5 = {u1f, u2f, S
2(u1, u2)v} in degree 1,

y1, y2 = u1v
3, u2v

3 in degree 2,
z = v5 in degree 3.

The ideal of relations between these can be studied by explicit elimination
(we used computer algebra, but it is not at all essential); one finds that it is
generated by

rank


∗ x1 x2 y0

x1 x3 x4 y1

x2 x4 x5 y2

y0 y1 y2 z

 ≤ 1, where y0 = q(x3, x4, x5). (1.4)

Taking y0 as a variable gives the second Veronese embedding of the one
point blowup of the 3-fold wps P(1

2
, 1

2
, 1

2
, 3

2
). Thus S(4) is a hypersurface

of weighted degree 2 in this curious weighted quasihomogenous variety. The
second Veronese embedding of the one point blowup of P3 is a well known
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codimension 5 del Pezzo variety appearing in other myths, and its equations
have a 14× 35 resolution. We check that this agrees with (1.3).

Exercise 1.2 Chronicle the fate of F5 and its d-point blowup S(d) → F5 for
d ≤ 9. [Hint: the Hilbert series is

P (t) =
1 + 9t+ 9t2 + 11t3 + 9t4 + 9t5 + t6

(1− t)2(1− t5) − d× t

(1− t)3

=
1 + (9− d)t+ (9− d)t2 + (11− d)t3 + (9− d)t4 + (9− d)t5 + t6

(1− t)2(1− t5) .

The singularity polarised by −K = A is of type 1
5
(3, 3), so that S(d) is in

P(111−d, 3, 3, 5). Thus d = 9 gives S6,6 ⊂ P(1, 1, 3, 3, 5) and d = 8 gives a nice
Pfaffian in P(1, 1, 1, 3, 3, 5), with Hilbert numerator

1− 2t4 − 3t6 + 3t7 + 2t9 − t13,

etc.]

These surfaces have a singularity of type 1
5
(3, 3); we were disappointed

at first to observe that none of these is a hyperplane section S ∈ |A| for
a Mori Fano 3-fold X of Fano index 2. For then X would have a quotient
singularity of type 1

5
(1, 3, 3), which is unfortunately not terminal. For further

disappointment, see 3.2.2.

2 The ingenious history of 1
5(2, 4)

Let T be a del Pezzo surface polarised by −KT = OT (A) with a quotient
point P ∈ T of type 1

5
(2, 4) as its only singularity. (Up to isomorphism,

P is the quotient singularity 1
5
(1, 2), but to give sections of −KT weight 1,

and make OT (A) = −KT the preferred generator of the local class group, we
twist µ5 by an automorphism so that dξ ∧dη is in the ε �→ ε character space,
and thus wt ξ = 2,wt η = 4 mod 5.) By an exercise in the style of [YPG],
Chapter III, we see that

Pn(T ) = 1 +

(
n+ 1

2

)
A2 −



0 n ≡ 0 mod 5

2/5 n ≡ 1 mod 5

1/5 n ≡ 2 mod 5

2/5 n ≡ 3 mod 5

0 n ≡ 4 mod 5
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Trying n = 1 gives A2 ≡ 2/5 mod Z. Putting these values in a Hilbert series
as usual and setting A2 = k + 2

5
gives

P (t) =
1

1− t +
t

(1− t)3A
2 − 1

5
· 2t+ t

2 + 2t3

1− t5

=
1

1− t +
t

(1− t)3k

+
1

5
· 2t(1 + t+ t2 + t3 + t4)− (1− t)2(2t+ t2 + 2t3)

(1− t)2(1− t5)
=

1− t+ t2 + t4 − t5 + t6

(1− t)2(1− t5) +
t

(1− t)3k.

The case k = 0 gives

1− t+ t2 + t4 − t5 + t6

(1− t)2(1− t5) =
1 + t3 + t4 + t7

(1− t)(1− t2)(1− t5)
=

1− t6 − t8 + t14

(1− t)(1− t2)(1− t3)(1− t4)(1− t5) ,

that is, T6,8 ⊂ P(1, 2, 3, 4, 5).
This surface turns out to be the bottom of a cascade of six projections,

whose head is the surface T = T6 ⊂ P(1, 1, 3, 5) with −KT = A = O(4).
We guessed this as follows: by the standard dimension count for del Pezzo
surfaces, we expect T6,8 to contain a finite number of −1-curves not passing
through the singularity. Contracting k disjoint −1-curves gives a surface
with K2

T = A2 = k + 2
5

and the above Hilbert series. For k = 6, we see that
A2 = 6 + 2

5
= 32

5
is divisible by 42, and we guess that A = 4B, leading to a

surface with the Hilbert series of T = T6 ⊂ P(1, 1, 3, 5). Hindsight is the only
justification for this guesswork.

One sees that the minimal resolution T̃ → T is the scroll F3 blown up in
two points on a fibre, and that T is obtained from this by contracting the
chain of P1s with self-intersection (−3,−2) coming from the negative section
and the birational transform of the fibre (see Figure 2.1).

−3

B

−2
�

�
F1

❅
❅
F2

Figure 2.1: Resolution of T = T6 ⊂ P(1, 1, 3, 5)

We start by calculating the anticanonical ring of the head of the cascade,
T = T6 ⊂ P(1, 1, 3, 5). Take coordinates u1, u2, v, w in P(1, 1, 3, 5), and take
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the defining equation of T to be

u2w = f6(u1, v) = av2 + bvu3
1 + cu6

1 = l1(v, u
3
1)l2(v, u

3
1); (2.1)

we could normalise the right-hand side to (v − u3
1)(v + u3

1). We use this rela-
tion to eliminate any monomial divisible by u2w. Write B for the divisor class
corresponding to OP(1) or its restriction to T . Since −KT = 4B, the anti-
canonical embedding of T is the 4th Veronese embedding of T ⊂ P(1, 1, 3, 5);
one checks that the anticanonical ring is generated by

x1, . . . , x7 = S4(u1, u2), (u1, u2)v in degree 1,

y1, y2 = u3
1w, vw in degree 2,

z = u2
1w

2 in degree 3,

t = u1w
3 in degree 4,

u = w4 in degree 5,

(2.2)

and that its relations are given by the 2× 2 minors ofx1 x2 x3 x4 x6 y1 z t
x2 x3 x4 x5 x7 A B C
y1 A B C y2 z t u

 , (2.3)

with

A = ax2
6 + bx1x6 + cx2

1,

B = ax6x7 + bx2x6 + cx1x2,

C = ax2
7 + bx3x6 + cx1x3.

Theorem 2.1 For d ≤ 6, write σ : T (d) ��� T for the blowup of T in d general
points P1, . . . , Pd. (We elucidate what “general” means in (2.6) below.) Write
Ei for the −1-curves over Pi and A(d) = σ∗A −∑

Ei for the anticanonical
class of T (d). Then T (d) is a log del Pezzo surface with only singularity of type
1
5
(2, 4) and (−KS)

2 = 6− d+ 2
5
.

For d ≤ 5, the anticanonical ring of T (d) needs 12−d generators of degrees
17−d, 22, 3, 4, 5, and gives an embedding T (d) ⊂ P(17−d, 22, 3, 4, 5) that takes the
Ei to disjoint projectively normal lines

Ei
∼= P1 ⊂ T (d) ⊂ P(17−d, 22, 3, 4, 5).

The anticanonical ring of T (6) needs 5 generators of degrees 1, 2, 3, 4, 5,
and embeds T (6) as the complete intersection T6,8 ⊂ P(1, 2, 3, 4, 5), taking the
Ei to disjoint −1-curves in T6,8 (of course, the Ei ⊂ P(1, 2, 3, 4, 5) cannot be
projectively normal).

Each inclusion R(T (d), A(d)) ⊂ R(T (d−1), A(d−1)) for d ≤ 5 is a Kustin–
Miller unprojection in the sense of [PR]. That is, it introduces precisely one
new generator of degree 1 with pole along Ed, subject only to linear relations.
For d = 6, see Remark 2.5.
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Proof As in the analogous recitations for nonsingular del Pezzo surfaces, the
proof consists for the most part of restricting to the general curve C ∈ |A(d)|.
The restriction R(T (d), A(d))→ R(C,A(d)) is a surjective ring homomorphism,
and is the quotient by the principal ideal (xC), where xC is the equation of
C. Thus the hyperplane section principle applies, and we only have to prove
the appropriate generation results for R(C,A(d)). In the antique tale, C is
a nonsingular elliptic curve, and we win because we know everything about
linear systems on it. In our case C ∈ |−KT (d) | is an elephant, so is again
a projectively Gorenstein curve with KC = 0, but it is an orbifold nodal
rational curve in a sense we are about to study. Our proof will then boil
down to a monomial calculation.

The general curve C ∈ |A| on T is irreducible and has an ordinary node
at P , and the two orbinates of P ∈ T restrict to respective local analytic
coordinates on the two branches of the node. In other words, P ∈ C is

locally analytically equivalent to the quotient
(
(ξη = 0) ⊂ C2

)
/(1

5
(2, 4)),

where ξ, η are as in Remark 2.4. To make formal sense of this, we need to
work with the affine cone over T ⊃ C along the u-axis, and the C∗ action on
them. The cone over T is nonsingular along the u-axis outside the origin, with
transverse coordinates y2, t (see (2.8)) – the 1

5
(2, 4) singularity arises from the

Z/5 isotropy. The coefficient of x6 in the equation (xC) of C is nonzero in
general, corresponding to u1v in (2.2). Therefore, along the u-axis, the cone
over C is given locally by y2t = higher order terms.

We choose a general curve C ∈ |A| and d ≤ 6 general points P1, . . . , Pd

contained in C. These points are also independent general points of T , be-
cause |A| is a 6-dimensional linear system on T . This choice ensures the
existence of an irreducible curve C ∈ |A −∑

Pi| with the local behaviour
at P just described. The birational transform of C on T (d) is an isomorphic
curve C ∈ |A(d)| that we continue to denote by C. It is irreducible, therefore
nef, and big since (A(d))2 > 0.

The normalisation n : C̃ → C ⊂ T (d) is a conventional orbifold curve: it
is a rational curve with two marked point P1, P2, the inverse image of the
node of C. In calculations, we take C = P1, and P1 = 0 and P2 = ∞. It is
polarised by Ã = n∗(A(d)) = 3

5
P1 + 4

5
P2 + (5 − d)Q, where Q is some other

point. This is just a notational device to handle the sheaf of graded algebras

A =
⊕
Ai with Ai = OP1

([
3i

5

]
P1 +

[
4i

5

]
P2

)
⊗OP1((5− d)i).

We calculate R(C̃, Ã) in monomial terms (the answer has a nice toric descrip-
tion, see Exercise 2.2).

For d = 5, the calculations is as follows: R(C̃, Ã) = R(P1, 3
5
P1 + 4

5
P2) is
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generated by

x in degree 1 with div x = 3
5
P1 + 4

5
P2,

y1, y2 in degree 2 with div(y1, y2) = (2P1, 2P2) + 1
5
P1 + 3

5
P2,

z in degree 3 with div z = 3P1 + 4
5
P1 + 2

5
P2,

t in degree 4 with div t = 5P1 + 2
5
P1 + 1

5
P2,

u1, u2 in degree 5 with div(u1, u2) = (7P1, 7P2).

(2.4)

Here, in each degree, |iD| is the fractional part {3i
5
}P1 + {4i

5
}P2 plus a lin-

ear system |OP1(ki)|, based by elements corresponding to the monomials
Ski(t1, t2), of which the middle ones are old, and some of the extreme ones
are new generators. Thus in degree 2, k2 = 2, and the monomials y1, x

2, y2
correspond to t21, t1t2, t

2
2.

Exercise 2.2 The generators of R(C̃, Ã) and the relations between them are
simply grasped by noting that u1, t, z, y1, x, y2, u2 in (2.4) satisfy

u1z = t2, ty1 = z2, zx = y2
1, y1y2 = x4, xu2 = y3

2;

this is the Jung–Hirzebruch presentation of the invariant ring of Z/(35) acting
on C2 by 1

35
(1, 12), where [2, 2, 2, 4, 3] = 35

35−12
. The case d = 6 gives [2, 2, 4] =

10
7
. Generalising this result to the general orbifold curve (P1, α1P1 + α2P2) is

a little gem of a problem.

The extension of graded rings R(C,A(d)) ⊂ R(C̃, Ã) is a normalisation,
separating two transverse sheets along the u-axis. The affine cone over the
nonnormal curve C is obtained by glueing the u1 and u2-axes together (differ-
ent choices of glueing differ by a factor in C∗, and lead to isomorphic rings).
The functions compatible with this glueing are those that take the same value
on u1 and u2-axes. Thus R(C,A(d)) ⊂ R(C̃, Ã) is the subring generated as
above, but with only one generator u = u1 − u2 in degree 5 instead of two.
This proves the statement on generators of R(S(d), A(d)) for d = 5. The cases
d ≤ 4 are similar.

In case d = 6, the orbifold divisor on C̃ = P1 is

Ã = n∗(A(d)) =
3

5
P1 +

4

5
P2 −Q.

An identical calculation shows that R(C̃, Ã) is generated by

y in degree 2 with div y = 1
5
P1 + 3

5
P2,

z in degree 3 with div z = 4
5
P1 + 2

5
P2,

t in degree 4 with div t = P1 + 2
5
P1 + 1

5
P2,

u1, u2 in degree 5 with div(u1, u2) = (2P1, 2P2).

(2.5)
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As before, the nonnormal subring R(C,A(d)) is generated by y, z, t and u =
u1 − u2, and one sees that the relations are

yt = z2, zu = t2 − y4.

That is, C is the complete intersection C6,8 ⊂ P(2, 3, 4, 5), as required.

This proves the assertion of Theorem 2.1 on the generation of the rings
R(T (d), A(d)). This proof uses that A(d) is nef and big, but not that it is ample.

We now prove that A(d) is ample. It is enough to show that the anticanon-
ical morphism of T (d) does not contract any curve Γ of T , or equivalently, that
T (d) does not contain any curve with A(d)Γ = 0. Now because the generators
of R(T (d), A(d)) include elements y2, t in (2.4) or y, t in (2.5) that give the
orbinates at P ∈ A, the anticanonical morphism of T (d) is an isomorphism
near P , and so Γ cannot pass through P . On the other hand, a curve with
A(d)Γ = 0 is necessarily a component of a divisor in the mobile linear system
|A(d)| if d ≤ 5, or |2A(d)| if d = 6.

One sees that T = T6 ⊂ P(1, 1, 3, 5) has a free pencil |B| defined by
(u1 : u2), with a reducible fibre u2 = 0 that splits into two components Fi :
(u2 = li = 0), where, as in (2.1), the equation of T is u2w = l1(v, u

3
1)l2(v, u

3
1)

(compare Figure 2.1). Every effective Weil divisor is linearly equivalent to
a positive linear combination of F1, F2. These satisfy F 2

1 = F 2
2 = −2

5
and

F1F2 = 3
5
, so that iF1 + jF2 is nef if only if 2

3
j < i < 3

2
j. Moreover, iF1 + jF2

can only move away from P if it is Cartier there, which happens if and only
if 5 | (i + j). Next iF1 + jF2 a component of |A| = |4F1 + 4F2| (resp. |2A|)
implies i, j ≤ 4 (resp. i, j ≤ 8).

Thus for d ≤ 5 we just have to handle Γ ∈ |2F1 + 3F2| and |3F1 + 2F2|.
Since −KTΓ = 4 and (Γ)2 = 2, RR gives h0(T,Γ) = 4, and for general points,
no 4 of P1, . . . , Pd are contained in Γ. This completes the proof if d ≤ 5. For
d = 6 we also need to consider

4F1 + 6F2, 5F1 + 5F2 and 7F1 + 8F2.

The proper transform of a curve Γ ⊂ T will give A(d)Γ = 0 if Γ ∈ |A| passes
through the Pi with multiplicity ai, where∑

ai = −KTΓ,
∑
ai = (Γ)2.

In the 3 cases above, the only solutions are

Γ = 4F1 + 6F2 : −KTΓ = 8, (Γ)2 = 8, none;
Γ = 5F1 + 5F2 : −KTΓ = 8, (Γ)2 = 10, (1, 1, 1, 1, 2, 2);
Γ = 7F1 + 8F2 : −KTΓ = 12, (Γ)2 = 24, (2, 2, 2, 2, 2, 2).
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The conclusion is that A(d) is ample if and only

(0) the Pi are distinct and contained in an irreducible curve C ∈ |A|;
(1) no 4 Pi are contained in any Γ ∈ |2F1 + 3F2| or |3F1 + 2F2|;
(2) |5F1 + 5F2 − P1 − P2 − P3 − P4 − 2P5 − 2P6| = ∅;
(3) |7F1 + 8F2 − 2

∑
Pi| = ∅ and |8F1 + 7F2 − 2

∑
Pi| = ∅.

(2.6)

Here conditions (2–3) are only required if d = 6.
These are open conditions on P1, . . . , Pd, and they should fail in codi-

mension 1. It remains to check that they are satisfied for general P1, . . . , P6.
Write C for the unique curve of |A| through P1, . . . , P6. Then any divisor Γ
on T in Case (2) contains C: indeed,(

5F1 + 5F2 − P1 − P2 − P3 − P4 − 2P5 − 2P6

)
|C

has degree 0, but is not linear equivalent to 0 on C for general P1, . . . , P6

(recall that C is a nodal cubic, so that its nonsingular points correspond to
different points of the algebraic group PicC = C∗). Thus Γ = C + B, where
|B| = |F1 +F2| is the pencil of T . Clearly, the element of |B| through P5 does
not in general pass through P6. The argument in Case (3) is similar: a divisor
Γ in Case (3) must be of the form C+D, where D ∈ |3F1 +4F2−

∑
Pi|. But

h0(T, 3F1 + 4F2) < h
0(T, 4F1 + 4F2) = h0(T,−KT ) = 7,

(see (2.2)) so that |3F1 + 4F2| does not contain a curve through 6 general
points of T . QED

Exercise 2.3 State and prove the analog of Theorem 2.1 for the cascade of
Section 1. In other words, prove that the d point blowup of F3 for d ≤ 8 has
the properties asserted (without proof!) throughout Section 1.

Remark 2.4 The monomials in (2.2) map to some of the local generators of
the sheaf of algebras

⊕4
i=0OT,P (i) at the 1

5
(2, 4) singularity. Indeed, write ξ, η

for ε2 and ε4 eigencoordinates on C2; then OT is the sheaf of invariant func-
tions, locally generated by ξ5, ξ3η, ξη2, η5, whereas the eigensheaves OT,P (i)
are modules over OT,P , and are locally generated by

OT,P (1) � ξ3, ξη, η4

OT,P (2) � ξ, η3

OT,P (3) � ξ4, ξ2η, η2

OT,P (4) � ξ2, η

OT,P (5) � 1.

(2.7)
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Then the homogeneous to inhomogeneous correspondence at P (setting 5
√
w =

1) has the effect

u1 �→ η and v �→ ξ,

so that the generators of R(T,−KT ) map to local generators of OT,P (i) by

deg 1: x1 = u4
1 �→ η4, x6 = u1v �→ ξη, ∅ �→ ξ3;

deg 2: y1 = u3
1w �→ η3, y2 = vw �→ ξ;

deg 3: z = u2
1w

2 �→ η2, x6y2 = u1v
2w �→ ξ2η, ∅ �→ ξ4;

deg 4: t = u1w
3 �→ η, y2

2 = v2w2 �→ ξ2;

deg 5: u = w4 �→ 1.

(2.8)

The remaining generators in (2.7) are hit by monomials in these generators:
for example, ξ3 ∈ OT (1) is first hit by y3

2 in degree 6. Thus OT (i) is not
always generated by itsH0, and not just because theH0(OX(i)) are too small.
However, by ampleness, R(T,−KT ) maps surjectively to local generators of⊕4

i=0OT (i), so that, for example, the orbinates ξ and η must be hit by some
generators of R(T,−KT ).

Remark 2.5 (Detailed calculations of Type II projection) We hope
eventually to use the two cascades of surfaces treated in Sections 1 and 2 as
exercises in understanding Type II unprojection as in [Ki], Section 9, and in
particular, solve the unfinished calculation in loc. cit., 9.12. The unprojection
from S10 ⊂ P(1, 2, 3, 5) to S4,4 ⊂ P(1, 1, 2, 2, 3) is covered by the equations
of [Ki], 9.8. The only little surprise here is that, instead of increasing the
codimension by 2, one of the entries in the 5 × 5 Pfaffian matrix is a unit,
and one of the equations masks the variable of degree 5 as a combination of
other variables.

On the other hand, the unprojection from S6,8 ⊂ P(1, 2, 3, 4, 5) leads to
a codimension 4 ring, and the calculation is similar to the one unfinished
in [Ki], 9.12. The image Γ of P1 ↪→ P(1, 2, 3, 4, 5) cannot be projectively
normal; indeed, if v1, v2 are coordinates on P1 and x, y, z, t, u coordinates on
P(1, 2, 3, 4, 5), the two rings have monomials

P(1, 2, 3, 4, 5) P1

in degree 1 x v1, v2
in degree 2 x2, y v2

1, v1v2, v
2
2

in degree 3 x3, xy, z v3
1, v

2
1v2, v1v

2
2, v

3
2

in degree 4 x4, x2y, y2, xz, t S4(v1, v2)

and the restriction map from P(1, 2, 3, 4, 5) to Γ clearly misses at least one
monomial in each degree 1, 2, 3. Choose S6,8 containing Γ. Unprojecting



240 Cascades of projections from log del Pezzo surfaces

it adds one linear generator, and one generator in each degree 2, 3 and 4
corresponding to these missing monomials (this will be explained better in
[qG]). The old variables of degree 3 and 4 are masked by equations, and this
gives rise to a codimension 4 surface S ′ ⊂ P(1, 1, 2, 2, 3, 4, 5). We still do not
know how to complete this calculation directly.

Remark 2.6 In the projection from F3 of Section 1, we always assumed that
the blown up points were in general position. In the classic epic of del Pezzo
surfaces, there are lots of interesting degenerations, most simply if 3 points
in P2 become collinear. The simplest way that blowups of F3 degenerate is
that two points come to lie on a fibre l of the ruling of F3. If we project from
two points on l, the birational transform of the fibre l becomes a −2-curve,
and contracting it together with the negative section of F3 gives a 1

5
(1, 2)

singularity. Thus all the surfaces in Section 2 are degenerate projections
of those in Section 1. For example, T6 ⊂ P(1, 1, 3, 5) is a projection of F3

from 2 points in a fibre (see Figure 2.1). This gives a top down elimination
argument as on page 231 that might allows us to complete the tricky Type 2
unprojection calculation just discussed.

This type of contraction between surfaces with log terminal singularities
corresponds to the bad links of [CPR], 5.5. We do not make this too precise.
The fact that we blow up a point, then unexpectedly contract the line l with
negative discrepancy is analogous to Sarkisov links involving an antiflip. The
regular kind of blowup of a nonsingular point in a del Pezzo cascade decreases
K2

S by 1, and the Hilbert function PS(t) by t/(1−t)3 = t+3t2+6t3+10t4+· · · ;
whereas the special blowup (of a point contained in a curve of degree 2/3 that
is a component of a split fibre of the conic bundle structure) considered here
only decreases K2

S by 14/15, and PS(t) by

t(1 + 2t+ 3t2 + 2t3 + 3t4 + 2t5 + t6)

(1− t)(1− t3)(1− t5)
= t+ 3t2 + 6t3 + 9t4 + 14t5 + 20t6 + 26t7 + · · ·

3 Final remarks

3.1 Why weighted projective varieties?

Nonsingular surfaces over a field k that are rational or ruled over k (that
is, have κ = −∞) are prominent objects of study in birational geometry
and in Diophantine geometry. By a theorem of Castelnuovo (a distinguished
precursor of Mori theory!), such a surface can be blown down (over k) to a
minimal surface, which is a del Pezzo surface of rank 1, or a conic bundle
over a curve with relative rank 1. In justifying the pre-eminent position of
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the cubic surfaces among del Pezzo surfaces, Peter Swinnerton-Dyer observes
that del Pezzo surfaces of degree ≥ 4 are in most respects too simple to be
interesting, whereas del Pezzo surfaces of degree 2 and 1 tend to be much too
difficult. Whereas the cubic surface is associated with the root systems E6,
those of degree 2 and 1, the weighted hypersurfaces S4 ⊂ P(13, 2) and S6 ⊂
P(12, 2, 3), are associated with E7 and E8, and are much more complicated
from essentially every point of view (Galois theory, biregular and birational
geometry, Diophantine arithmetic, etc.). In Peter’s words:

“if your research adviser gives you a problem involving del Pezzo
surfaces of degree 2 and 1, it means he really hates you.”

In view of this, working with del Pezzo surfaces with cyclic singularities
may seem perverse, since it leads to even more exotic weighted projective
constructions. For example our model case is S10 ⊂ P(1, 2, 3, 5), the 8 point
blowup of F3. It makes sense to write down the equation of S10 over any
field, and to ask for its solutions: does this lead to any interesting problems
of birational geometry or Diophantine arithmetic? The Galois group of the
configuration of eight −1-curves is clearly the symmetric groups S8. In con-
trast to the minimal cubic surface, this is birational over k in an obvious way
to the conic bundle F3 → P1, with the marked section, and a set of 8 points
defined over k. This suggests that our surfaces are actually simpler objects
and do not involve especially difficult or interesting Diophantine issues. On
a more positive note, log del Pezzo surfaces come in large infinite families,
among which we can surely always find some really complicated case for the
graduate student who deserves that special attention.

3.2 Log del Pezzo surfaces and Fano 3-folds of index 2

3.2.1 The fabulous half-elephant

Our main motivation was of course to use log del Pezzo surfaces to study Fano
3-folds of Fano index f = 2. The Fano index of a Fano 3-fold X in the Mori
category is the maximum natural number f such that −KX = fA with A a
Weil divisor of X. Our model is the general strategy of Altınok, Brown and
Reid [ABR], that uses K3 surfaces as technical background and motivation in
the study of Fano 3-folds of index 1. If X is a Fano with −KX = 2A twice an
ample Weil divisor, a sufficiently good surface S ∈ |A| is a del Pezzo surface
(if it exists, see below); an element of |−KX | is called an elephant, so S ∈ |A|
is a half-elephant. In the two cascades of Sections 1 and 2, all the del Pezzo
surfaces up to codimension 3 extend in an unobstructed way to Fano 3-folds.
Thus for example, we have Fano 3-folds of index 2

X10 ⊂ P(12, 2, 3, 5), X4,4 ⊂ P(13, 22, 3), and XPf ⊂ P(14, 22, 3)
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extending the del Pezzo surfaces of Table 1.1. What happens in cases of
codimension 4 is a computation based on the same projection cascade that
we have not had time to finish; the basic question is to find all Pfaffian
3-folds XPf ⊂ P(14, 22, 3) containing a linearly embedded P2 ↪→ P(14, 22, 3).
It seems likely that the single unprojection type for del Pezzo surfaces from
codimension 3 to 4 splits into Tom and Jerry cases for Fano 3-folds that are
essentially different (compare [Ki], Example 6.4 and 6.8 and [P1]–[P2]).

On the other hand, the codimension 5 surface S(4) ⊂ P(15, 22, 3) of (1.4)
probably does not have any extension in degree 1 to a Fano 3-fold of index 2:
we conjecture this because it seems hard to incorporate a new variable x6 of
degree 1 into the equations (1.4) in a nontrivial way to give a 3-fold having
only terminal singularities.

3.2.2 A good half-elephant is an extremely rare beast

In contradiction to our initial hopes, most Fano 3-folds X of index 2 do not
have a half-elephant, and most log del Pezzo surface S do not extend to a Fano
3-fold of index 2. An obvious necessary global condition is P1(X) ≥ 1, but
there are also severe local restrictions on the basket of quotient singularities:
each quotient singularity 1

r
(1, a, r − a) in the basket of X must have 2a ∼=

±1 mod r (so that when we rewrite the singularity as 1
r
(2, 2a, r − 2a), the

equation of S in degree 1 can be one of the orbinates). In slightly different
terms, as we saw in 1.2, a del Pezzo surface S with a singularity of type
1
r
(a, b), polarised by −KS = A, so that a + b ∼= 1 mod r, can only extend to

a Fano 3-fold of index 2 if a+ 1 or b+ 1 ∼= 0 mod r (compare Example 1.2),
so that 1

r
(1, a, b) is terminal.

These conditions restricts the several thousand baskets for index 2 Fanos
to just a handful having a possible log del Pezzo surface as half-elephant.
Table 3.1 is a preliminary list of a few f = 2 Fano 3-folds without any projec-
tions from smooth points (not complete, but possibly fairly typical). Apart
from Nos. 1 and 2 that we already know from Sections 1–2, the only cases in
this list having a good half-elephant are No. 12, X10,12 ⊂ P(1, 2, 3, 5, 6, 7) and
No. 14, X8,10 ⊂ P(1, 2, 3, 4, 5, 5).

3.2.3 Fano 3-folds of index 2 and projections

Quite independently of del Pezzo surfaces, Fano 3-folds of index 2 usually
have projections based on blowing up a nonsingular point, so often belong to
projection cascades. Suppose that X is a Fano 3-fold in the Mori category
(that is, with at worst terminal singularities) and −KX = 2A with A a Weil
divisor. Consider the blowup σ : X ′ → X at a nonsingular point P ∈ X
with exceptional surface E ∼= P2. Then by the adjunction formula for a
blowup, −KX′ = 2A′, where A′ = σ∗A − E. If A3 > 1 and P ∈ X is
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1. X10 ⊂ P(1, 1, 2, 3, 5) 1
3
(2, 2, 1)

2. X6,8 ⊂ P(1, 1, 2, 3, 4, 5) 1
5
(1, 2, 4)

3. X10,14 ⊂ P(1, 2, 2, 5, 7, 9) 1
9
(2, 2, 7)

4. X12,14 ⊂ P(1, 2, 3, 4, 7, 11) 1
11

(2, 4, 7)

5. X8,10 ⊂ P(1, 2, 2, 3, 5, 7) 1
3
(2, 2, 1), 1

7
(2, 2, 5)

6. X22 ⊂ P(1, 2, 3, 7, 11) 1
3
(2, 2, 1), 1

7
(2, 3, 4)

7. X10,12 ⊂ P(1, 2, 3, 4, 5, 9) 1
3
(2, 2, 1), 1

9
(2, 4, 5)

8. X6,10 ⊂ P(1, 2, 2, 3, 5, 5) 2× 1
5
(2, 2, 3)

9. X8,12 ⊂ P(1, 2, 3, 4, 5, 7) 1
5
(1, 3, 4), 1

7
(2, 3, 4)

10. X26 ⊂ P(1, 2, 5, 7, 13) 1
5
(2, 2, 3), 1

7
(1, 2, 6)

11. X6,8 ⊂ P(1, 2, 2, 3, 3, 5) 1
3
(2, 2, 1), 1

5
(2, 2, 3)

12. X10,12 ⊂ P(1, 2, 3, 5, 6, 7) 2× 1
3
(2, 2, 1), 1

7
(1, 2, 6)

13. X14,18 ⊂ P(2, 2, 3, 7, 9, 11) 2× 1
3
(2, 2, 1), 1

11
(2, 2, 9)

14. X8,10 ⊂ P(1, 2, 3, 4, 5, 5) 1
3
(2, 2, 1), 2× 1

5
(1, 2, 4)

15. X12,14 ⊂ P(2, 2, 3, 5, 7, 9) 1
3
(2, 2, 1), 1

5
(2, 2, 3), 1

9
(2, 2, 7)

16. X10,14 ⊂ P(2, 2, 3, 5, 7, 7) 1
3
(2, 2, 1), 2× 1

7
(2, 2, 5)

17. X10,12 ⊂ P(2, 2, 3, 5, 5, 7) 2× 1
5
(2, 2, 3), 1

7
(2, 2, 5)

18. X10,12 ⊂ P(2, 3, 3, 4, 5, 7) 4× 1
3
(2, 2, 1), 1

7
(2, 3, 4)

19. X6,6 ⊂ P(1, 1, 2, 2, 3, 5) 1
5
(2, 2, 3)

Table 3.1: Some index 2 Fano 3-folds

general then A′ is nef and big, and defines a birational contraction X ′ → X,
where X is again a (singular) Fano 3-fold of index 2 containing a copy of
E ∼= P2 with A|E ∼= OP2(1); in general, X will have finitely many nodes on E,

corresponding to the lines onX through P . The inclusionR(X,A) ⊂ R(X,A)
is the quasi-Gorenstein unprojection of E (in the sense of [PR] and [qG]).
This means that Fano 3-folds of index 2 could in principle be constructed
by starting from a variety such as one of Table 3.1, force it to contain an
embedded plane E ∼= P2 of degree 1, which can then be contracted to a
nonsingular point by an unprojection. This calculation has a number of
entertaining features, not the least the question of how to describe embeddings
(say) P2 ↪→ P(1, 2, 2, 5, 6, 9) and codimension 2 complete intersections X10,14

containing the image.

The nonsingular case is well known: for example, a Fano 3-fold X ⊂ P7 of
index 2 and degree 6 has a projection X ��� X, that coincides with the linear
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projection from a point, whose image is a linear section of the Grassmannian
Grass(2, 5) containing a linearly embedded plane P2 ⊂ X ↪→ Grass(2, 5).
There are two different ways of embedding a plane P2 ↪→ Grass(2, 5) related
to Schubert conditions, and these give rise to the two families of unprojection
called Tom and Jerry, corresponding to the linear section of the Segre em-
bedding of the hyperplane section of P2×P2, and P1×P1×P2. See [P1]–[P2]
for details.

3.2.4 Alternative birational treatments

Whereas Table 3.1 (or a suitable completion), together with unprojection of
planes to nonsingular points, could thus provide a basis for a detailed classi-
fication of Fano 3-folds of index 2 (or at least for their numerical invariants),
it is possible that many of these varieties could be studied more easily by bi-
rational methods: in this paper we have mainly concentrated on projections
from nonsingular points, but each projection can presumably be completed
to a Sarkisov link (Corti [Co]), giving rise to a birational description.

There are alternative birational methods, for example, based on projec-
tions from quotient singularities; these may take us outside the Mori cate-
gory, as with the “Takeuchi program” used by Takagi in his study of Fano
3-folds with singular index 2 (see [T]). Most of the del Pezzo surfaces and
Fano 3-folds we treat here in fact have projections of Type I. For example,
X6,8 ⊂ P(1, 1, 2, 3, 4, 5)x1,x2,y,z,t,u has equations

ux1 = A6(x2, y, z, t) and uz = B8(x2, y, z, t),

so that eliminating u gives a birational map from X6,8 to the hypersurface

X9 : (Bx− Az) ⊂ P(1, 1, 2, 3, 4).

Algebraically this is a Type I projection, in fact of the simplest Bx−Ay type
(see [Ki], Section 2). However, from the point of view of the Sarkisov program,
it is quite different: introducing the weighted ratio x2 : y : t makes the (1, 2, 4)
blowup at P , not the Kawamata blowup – it is the blowup X1 → X with
exceptional surface E of discrepancy 2/5, so that −KX1 = 2(A − 1/5E).
This preserves the index 2 condition, but introduces a line of A1 singularities
along the y, t axis on X9, taking us out of the Mori category. Compare also
Example 3.1.

3.2.5 How many Fano 3-folds of index ≥ 3 are there?

Fano 3-folds of index f ≥ 3 do not form projection cascades – a blowup
X ′ → X changes the index. Another way of seeing this is to note that for
f ≥ 3, orbifold RR applied to χ(−A) = 0 gives a formula for A3 in terms of
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the basket of singularities B = {1
r
(1, a, r − a)}, in much the same what that

Ac2
12

is determined by the classic orbifold RR formula for χ(OX):

(−KX)c2
24

= 1−
∑
B

r2 − 1

12r
,

(see [YPG], Corollary 10.3).
The numerical invariants of a Fano 3-fold are the data going into the

orbifold RR formula, giving the Hilbert series; compare [ABR], Section 4. It
consists of A3, Ac2

12
and the basket of singularities B; for f ≥ 3, the first two

rational numbers are determined by B.
Suzuki’s Univ. of Tokyo thesis [Su], [Su1] (based in part on Magma pro-

gramming by Gavin Brown [GRD]) contains lists of the possible numerical
invariants of Fano 3-folds of index f ≥ 2. She proves in particular that f ≤ 19,
with f = 19 if and only ifX has the same Hilbert series as weighted projective
space P(3, 4, 5, 7) (we conjecture of course that then X ∼= P(3, 4, 5, 7).) For
f = 3, . . . , 19, the number of possible numerical types is bounded as follows:

f 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

nf 12 9 7 1 5 3 2 0 3 0 1 0 0 0 1 0 1

Nf 20 24 14 5 11 5 2 1

Here nf is a lower bound, and Nf a rough upper bound: nf refers to the
number of established cases in codimension ≤ 2, that is, weighted projective
spaces, hypersurfaces or codimension 2 complete intersections. Nf is the
number of candidate baskets, that includes cases in codimension 4 and 5 that
we expect to be able to justify with more work, together with many less
reputable candidates.1 For f ≥ 9 the number nf is correct, except for an
annoying (and thoroughly disreputable) candidate with f = 10.

Rather remarkably, there are no codimension 3 Pfaffians except for the
case S(6) of Section 1 (see (1.1)) with f = 2; so far we are unable to deter-
mine which candidate cases in codimension ≥ 4 really occur (which accounts
for the uncertainties in the list). By analogy with Mukai’s results for non-
singular Fanos, one may speculate that Fano 3-folds in higher codimension
should often be quasilinear sections of certain “key varieties”, such as the
weighted Grassmannians treated in Corti and Reid [CR], and there may be
some convincing reason why there are few codimension ≥ 3 cases.

3.2.6 How many interesting cascades are there?

For present purposes, for a cascade to be of interest, at least one of the
graded rings at the bottom must be explicitly computable; for us to get some

1There are currently some problems with the upper bound Nf ; the rigorous bound is
much larger than given here. For details, see Suzuki’s thesis [Su1].
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benefit, it should realistically have codimension ≤ 3. Also, we must be able
to identify the surface at the top of the cascade, for example, because it
has higher Fano index, so is a simpler object in a Veronese embedding. The
cascades of Sections 1–2 illustrate how these conditions work in ideal settings.
These conditions are restrictive, and probably only allow a small number of
numerical cases. Thus, whereas each of Fk for k = 7, 9, . . . is the head of a
tall cascade, involving k + 4 blowups, a moment’s thought along the lines of
Exercise 1.2 shows that essentially none of the surfaces in it has anticanonical
ring of small codimension. They do not extend to Fano 3-folds of index 2 for
the reason given in Exercise 1.2 and 3.2.2.

As another example, consider the Fano 3-fold X10,12 ⊂ P(1, 2, 3, 5, 6, 7)
of Table 3.1, No. 12 and its half-elephant S10,12 ⊂ P(2, 3, 5, 6, 7). This is
a surface with quotient singularities 2 × 1

3
(2, 2) and 1

7
(2, 6) and K2 = 2

21
.

Its minimal resolution S̃ → S is a surface with K2
S̃

= −1, so is a scroll Fn

blown up 9 times, containing two disjoint −3-curves and a disjoint −3,−2,−2
chain of curves arising from the 1

7
(2, 6) singularity. S̃ can be constructed by

blowing up F0 = P1 × P1 9 times, with 3 of the centres on each of 2 sections,
and 3 other centres infinitely near points along a nonsingular arc. It seems
likely that if these blowups are chosen generically, this surface contains no
−1-curves not passing through the singularities. Thus there seem to be more
complicated cases in which there is no cascade at all. Now, in what way is
S10,12 ⊂ P(2, 3, 5, 6, 7) so different from T6,8 ⊂ P(1, 2, 3, 4, 5) of Section 2?

3.3 Mirages

Mirages have been a common phenomenon in the study of weighted projective
varieties since Fletcher’s thesis. The question is to construct a graded ring
and a plausible candidate for a variety in weighted projective space having
a given Hilbert series. It happens frequently that we can find a graded ring,
but it does not correspond to a good variety, for example, because one of the
variables cannot appear in any relations for reasons of degree, so that the
candidate variety is a weighted cone. See p. 229 and Example 3.1 below for
typical cases.

A mirage is an unexpected component of a Hilbert scheme, that does not
consist of the varieties that we want, but of some degenerate cases, e.g., cones,
varieties with index bigger than specified, or varieties condemned to have some
extra singularities. The Hilbert scheme of a family of Fano 3-folds may have
other components, e.g., consisting of varieties with the same numerical data,
but different divisor class group. For example, the second Veronese embedding
of our index 2 Fanos X10 ⊂ P(1, 1, 2, 3, 5) gives an extra component of the
family of Fano 3-folds of index 1 with (−K)3 = 2 + 2

3
.

More generally, it is an interesting open problem to understand what these
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mirages really are, and to find formal criteria to deal with them systematically
in computer generated lists. One clue is to consider how global sections of
OX(i) correspond to local sections of the sheaf of algebras

⊕OX,P (i) as
indicated in Remark 2.4.

Example 3.1 We work out one final legend that illustrates several points.
Looking for a Fano 3-fold X of Fano index f = 2 with a 1

11
(2, 3, 8) terminal

quotient singularity P ∈ X by our Hilbert series methods gives (we omit a
couple of lines of Magma)

PX(t) =
(1− t6)(1− t9)(1− t10)∏

(1− tai) : i ∈ [1, 2, 2, 3, 3, 5, 11]
.

That is, the Hilbert series of the c.i. X6,9,10 ⊂ P(1, 2, 2, 3, 3, 5, 11). As with the
examples on p. 229, this candidate is a mirage for two reasons: the equations
cannot involve the variable of degree 11, and there is no variable of degree
8 to act as orbinate at the singularity (this kind of thing seems to happens
fairly often with candidate models). Adding a generator of degree 8 to the
ring gives a codimension 4 model X ⊂ P(1, 2, 2, 3, 3, 5, 8, 11). We expect that
this model works: we can eliminate the variable of degree 11 by a Type I
projection X ��� X ′ corresponding to the (2, 3, 8) blowup, as described in
3.2.4. This weighted blowup subtracts

t11

(1− t2)(1− t3)(1− t8)(1− t11)
from P (T ), and a little calculation

PX(t)− t11

(1− t2)(1− t3)(1− t8)(1− t11)
=

1− t6 − t8 − t9 − t10 + t12 + t13 + t14 + t16 − t22
(1− t)(1− t2)2(1− t3)2(1− t5)(1− t8)

gives the model for the projected variety X ′ as the Pfaffian with weights
1 2 3 5

3 4 6
5 7

8

 in P(1, 2, 2, 3, 3, 5, 8).

Here X ′ is supposed to contain Π = P(2, 3, 8) : (x = y1 = z1 = t = 0). The
two ways of achieving this are: take

Tom: the first 4× 4 block
or Jerry: the first 2 rows

}
in the ideal IΠ = (x, y1, z1, t),
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that is, something like
x y1 z1 a5

z1 y2
1 b6
t c7
d8

 or


x y1 z1 x5

z1 y2
1 y3

1 + z2
1

b′6 c′7
d′8

 ,
so that X can be constructed either as a Tom or a Jerry unprojection (see
[PR], [P1]–[P2]). As in 3.2.4, the projected variety has a line of A1 singulari-
ties along the y2, z2 axis.
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On obstructions to the Hasse principle

Per Salberger

to Sir Peter Swinnerton-Dyer

Introduction

A basic problem in arithmetic geometry is to decide if a variety defined over
a number field k has a k-rational point. This is only possible if there is a
kv-point on the variety for each completion kv of k. It remains to decide if
there is a k-point on a variety with a kv-point at each place v of k. The first
positive results were obtained by Hasse for quadrics and varieties defined by
means of certain norm forms. A class of varieties, therefore, is said to satisfy
the Hasse principle if each variety in the class has a k-point as soon as it
has kv-points for all places v. The corresponding property for the smooth
locus is called the smooth Hasse principle. It is also natural to ask if weak
approximation holds. This means that the set of k-points is dense in the
topological space of adelic points on the smooth locus.

There are counterexamples to the Hasse principle and weak approximation
already for smooth cubic curves and cubic surfaces. These counterexamples
can be explained by means of a general obstruction to the Hasse principle
due to Manin based on the Brauer group of the variety and the reciprocity
law in class field theory. Most but not all of the known counterexamples
can be explained by this obstruction (Skorobogatov [Sk]). It is likely that
Manin’s obstruction is the only obstruction to the (smooth) Hasse principle
for rational varieties. But it has only been proved in very special cases.

It is more reasonable to study the Hasse principle for 0-cycles of degree
one. For curves it is possible to relate the uniqueness of Manin’s obstruction
to the finiteness of the Tate–Shafarevich group of the jacobian, which has
been proved for some elliptic curves by Kolyvagin and Rubin. Another fairly
general result is due to the author [Sa] and concerns conic bundle surfaces
over the projective line. There we proved a difficult conjecture of Colliot-
Thélène and Sansuc (Conjecture B on p. 443 in [CT/S1]). It says that a new
kind of Shafarevich group X1(k,M) defined by means of K theory vanishes
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for rational surfaces. This result has several consequences. One corollary con-
cerns the size of the Chow group of degree zero cycles (cf. [CT/S1] and [Sa]).
Another corollary obtained in 1987 and announced in [Sa] is the following

0.1 Theorem Let k be a number field and X a conic bundle surface over
P1

k. Then Manin’s obstruction is the only obstruction to the Hasse principle
for 0-cycles of degree one.

The author included in [Sa] a proof when the Brauer group H2
ét(X,Gm)

of X contains no other elements than those coming from the Brauer group
of k. Then the Manin obstruction vanishes so that one obtains the simpler
statement that the Hasse principle holds for 0-cycles of degree one. One of
the motivations for the present paper is to present a proof of Theorem 0.1,
by deducing it from our result on X1(k,M). This is an improved version of
the proof found in 1987.

It is based on a generalization of the descent theory of Colliot-Thélène
and Sansuc [CT/S2] for rational points to 0-cycles of degree one. The rest
of the proof is to show that certain diagrams commute. This is done using
techniques similar to those in Bloch [Bl] and [CT/S1].

The descent theory developed by Colliot-Thélène and Sansuc is an analog
of the classical descent theory for elliptic curves developed by Fermat, Euler,
Mordell and Weil. If pα : Tα → X is a class of such descent varieties and K
is an overfield of k, then the sets pα(Tα(K)) form a partition of X(K). The
descent varieties we consider are torsors over X under commutative algebraic
groups.

For varieties with finitely generated torsion-free Picard groups, Colliot-
Thélène and Sansuc [CT/S2] introduced a special kind of descent varieties
called universal torsors. These are torsors under the Néron–Severi torus of
the variety having a certain universal property among other torsors. One of
the most important results in their paper is the following

0.2 Theorem Let X be a smooth proper rational variety with a kv-point
Pv in each completion of k. Suppose that the set of these kv-points satis-
fies Manin’s Brauer group condition. Then there exists a universal X-torsor
p : T → X under the Néron–Severi torus T of X (see (1.2)) such that the
kv-torsors under T ×k kv at Pv obtained by base extension are trivial for each
place v of kv.

This means that there are kv-points Qv on T such that p(Qv) = Pv for
each place v of k. Therefore, if the universal torsors over X satisfy the
Hasse principle, then Manin’s obstruction is the only obstruction to the Hasse
principle for X. There are many applications of this result. For some classes
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of rational varieties X it is possible to establish the Hasse principle for the
universal torsors either directly or by means of some intermediate torsors.

The proof of Theorem 0.2 in [CT/S2] uses explicit computations of cocy-
cles. The aim of Section 1 is to offer a proof based on simple functoriality
properties of étale cohomology. It is not necessary to assume that X is ra-
tional. It suffices to assume (just as in the proof in op. cit.) that the Picard
group of X ×k k is finitely generated and torsion-free for an algebraic closure
k of k. Only Brauer classes in the “algebraic part” H̃2

ét(X,Gm) of the Brauer
group of X occur. This is the kernel of the functorial map from H2

ét(X,Gm)

to H2
ét(X ×k k,Gm). If X is smooth and rational, then H̃2

ét(X,Gm) is the full
Brauer group of X.

The basic idea of the proof is to “kill” the nonconstant algebraic part of
the Brauer group of X by considering a fibre product Π of a finite number
of Severi–Brauer schemes over X which are trivial at the specializations at
the given kv-points. The vanishing of Manin’s obstruction for the algebraic
part of the Brauer group implies that H̃2

ét(Π,Gm) contains no other elements
than those coming from the Brauer group of k. The given kv-points can be
lifted to kv-points on Π. It is now easy to show that there exists a universal
Π-torsor which is trivial at these kv-points on Π and from this, construct the
desired universal X-torsor. (Use (1.4) and its functoriality under Π → X.)
This gives a natural proof of Theorem 0.2.

There is no direct extension of this proof to 0-cycles of degree one since
such cycles cannot be lifted to the Severi–Brauer schemes over X. We there-
fore replace the Severi–Brauer X-schemes by X-torsors under tori. This
makes the proof less transparent. But the rôle of the auxiliary torsors is
the same. They are used to simplify the cohomological obstructions. The
X-torsors denoted by S are in fact chosen in such a way that they give rise
to universal torsors over Π after pull-back of their base with respect to the
morphism Π → X.

The advantage of this approach is that we can generalize Theorem 0.2 to
a statement where the kv-points Pv are replaced by 0-cycles of degree one (see
Theorem 1.27). Any 0-cycle zv on X ×k kv defines a natural specialization
map ρ(zv) from H1

ét(X,T ) to H1
ét(kv, Tv). Our generalization of Theorem 0.2

says that there exists a universal X-torsor p : T → X such that the class
[T ] ∈ H1

ét(X,T ) of T belongs to the kernel of ρ(zv) for each place v of k. This
generalization is more difficult to prove and apply than Theorem 0.2, since
the triviality of ρ(zv)([T ]) in H1

ét(kv, Tv) does not guarantee that zv can be
lifted to a 0-cycle of degree one on T as in the case of kv-points.

The results in Section 1 are the following. We first give precise criteria
for when there exists a universal torsor for a large class of varieties over a
number field k. One necessary condition is that there are universal torsors
over the kv-varieties that are obtained by base extension from k to kv. A
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second necessary condition is given by considering the elements in the Brauer
group of the variety that become constant after all the base extensions to local
fields. We first formulate one criterion (Proposition 1.12) without assuming
that there are 0-cycles of degree one over the local fields kv and then, as
an application, a second criterion (Proposition 1.26) under the assumptions
that such 0-cycles exist over each completion kv. Such criteria were first
established in [CT/S2] in the case when the 0-cycles are kv-points on X.

In Theorem 1.27 we then prove our generalization of Theorem 0.2 dis-
cussed above. It is worth noting that the result also applies to varieties with
H1(X,OX) = 0 and torsion-free Néron–Severi group, such as K3 surfaces.
But the rationality assumption in [CT/S2, Section 3] remains essential for
the conjecture that the universal torsors satisfy the Hasse principle. The con-
verse (ii) ⇒ (i) of Theorem 1.27 tells us that the universal torsors contain all
the information about the obstruction coming from the algebraic part of the
Brauer group.

To prove Theorem 0.1 we need a strange corollary of Theorem 1.27 (Corol-
lary 1.45) for torsors defined over an open subset of X. To prove this result,
we use arguments related to the “description locale des torseurs” in [CT/S2].
This corollary plays an important rôle in the proof of Theorem 0.1 in Sec-
tion 2.

In Section 2 we first recall the K-theoretic construction of Bloch [Bl]
for rational surfaces as well as some refinements in [CT/S1] and [Sa]. A
fundamental tool in [Bl] is a characteristic homomorphism φ′ for rational
surfaces from the group Z0(X)0 of 0-cycles of degree zero to H1

ét(k, T ) where
T is the Néron–Severi torus of X. In order to prove Theorem 0.1 we need
that this map behaves well under specializations. This is not immediate for
Bloch’s map, but easy to show for another map φ of Colliot-Thélène and
Sansuc defined by means of universal torsors. We shall therefore make use of
the fact that φ = φ′ for rational surfaces. We then prove that the vanishing of
X1(k,M) implies that the Manin obstruction is the only obstruction to the
Hasse principle for 0-cycles of degree one. This is proved for rational surfaces
and, more generally, for the class of varieties satisfying certain axioms (2.3)
and (2.4). In particular, we deduce Theorem 0.1 from the deep arithmetical
result on X1(k,M) for rational conic bundle surfaces in [Sa].

This paper is a slightly revised version of a manuscript from 1993 in which
I prove Theorem 0.1 for a more general class of rational varieties with a pencil
of Severi–Brauer varieties. There is also a proof of this more general result in
the paper of Colliot-Thélène and Swinnerton-Dyer [CT/SwD]. Their approach
is different and not based on descent theory.

I would like to express my gratitude to the referee for his careful reading
of the paper.
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1 Universal torsors, Brauer groups and

obstructions to the Hasse principle

Let k be a field, k a separable closure of k and G := Gal(k/k) the abso-
lute Galois group of k. There is a contravariant equivalence (cf. Borel [Bo])
between the categories of k-tori and the category of finitely generated torsion-
free discrete G-modules. If S is a k-torus, then there is a natural G-action
on the character group Ŝ := Hom(S,Gm,k) of the k-torus S = k ×k S such

that Ŝ becomes a finitely generated torsion-free discrete G-module. Con-
versely, if M is a finitely generated torsion-free discrete G-module, then
D(M) := HomZ(M,k

∗
) is a k-torus with a natural k-structure induced by the

G-action on M , thereby defining a k-torus. In the sequel we identify M with

its bidual D̂(M) and write id : D̂(M)
�−→ M for the canonical G-isomorphism.

We recall some basic notions and results from the descent theory of Colliot-
Thélène and Sansuc [CT/S2]. We will consider k-varieties over a perfect field
k satisfying the following assumptions.

X is a smooth proper k-variety such that X := k ×X is
connected and PicX := H1

ét(X,Gm) is finitely generated
and torsion-free.

(1.1)

Let π : S → X be a k-morphism from a k-variety S which is faithfully flat
and locally of finite type over X. Let S be a k-torus. Then π : S → X is said
to be a (left) X-torsor under S if there is a (left) action σ : S × S → S such
that the k-morphism

(σ, pr2) : S ×X S −→ S ×X S

induced by σ and the second projection pr2 : S ×X S → S is an isomor-
phism. We usually write S rather than π : S → X for the X-torsor. An
X-torsor under a k-torus is locally trivial in the étale topology by a theorem
of Grothendieck. The isomorphism classes of X-torsors under S correspond
to elements of H1

ét(X,S).

Now let χ : H1
ét(X,S) → HomG(Ŝ,PicX) be the homomorphism induced

by the additive pairing H1
ét(X,S) × Hom(S,Gm,k) → H1

ét(X,Gm,k).

1.2 Definition

(a) Let S be an X-torsor under S and [S] its class in H1
ét(X,S). Then

χ([S]) ∈ HomG(Ŝ,PicX) is called the type of S.

(b) The Néron–Severi torus T of X is the k-torus D(PicX) associated to
the discrete G-module PicX.
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(c) A universal torsor over X is an X-torsor under the Néron–Severi torus

T whose type is id : T̂ → PicX.

By considering the spectral sequence

Extp
két

(Ŝ, Rqp∗Gm,X) ⇒ Extp+q
Xét

(p∗Ŝ,Gm,X) (1.3)

for a k-torus S and the structure morphism p : X → Spec k (see [CT/S2,
1.5.1]), Colliot-Thélène and Sansuc obtained the exact sequence:

0 → H1
ét(k, S) → H1

ét(X,S)
χ−→ HomG(Ŝ,PicX)

δ−→ H2
ét(k, S) → H2

ét(X,S). (1.4)

The homomorphisms H i
ét(k, S) → H i

ét(X,S) are the functorial contravari-
ant maps in étale cohomology. We shall not give any explicit description of δ.
All we need in the proofs is that the sequence (1.4) is functorial under field
extensions of k and homomorphisms of k-tori.

Let H̃2
ét(X,S) := Ker

(
H2

ét(X,S) → H2
ét(X,S)

)
. By analysing (1.3) fur-

ther, one extends the end of (1.4) to an exact sequence:

HomG(Ŝ,PicX)

δ−→ H2
ét(k, S) → H̃2

ét(X,S) → ExtG(Ŝ,PicX) → H3
ét(k, S). (1.5)

In particular for S = Gm,k, one obtains the well-known sequence:

H2
ét(k,Gm,k) → H̃2

ét(X,Gm,k) → ExtG(Z,PicX) → H3
ét(k,Gm,k). (1.6)

The next result is also in [CT/S2]. We include a proof, since op. cit. does
not prove the implication (iii) ⇒ (ii) directly.

1.7 Proposition Let k, X be as in (1.1) and let T be the Néron–Severi
torus of X. Then the following conditions are equivalent.

(i) H2
ét(k, T ) → H2

ét(X,T ) is injective for the Néron–Severi torus T .

(ii) H2
ét(k, S) → H2

ét(X,S) is injective for any k-torus S.

(iii) There exists a universal torsor over X.
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Proof (ii) ⇒ (i) is trivial and (i) ⇒ (iii) is immediate from (1.4). To prove

(iii) ⇒ (ii), let S be a k-torus and χ ∈ HomG(Ŝ,PicX). Then there is a dual
homomorphism D(χ) of k-tori T → S inducing a commutative diagram

H1
ét(X,T ) → HomG(T̂ ,PicX) → H2

ét(k, T ) → H2
ét(X,T )� � � �

H1
ét(X,S) → HomG(Ŝ,PicX) → H2

ét(k, S) → H2
ét(X,S)

such that id ∈ HomG(T̂ ,PicX) goes to χ in HomG(Ŝ,PicX). Hence δ(χ) = 0,
thereby proving (iii) ⇒ (ii). �

Recall that a 0-cycle on X is a finite formal sum z =
∑

niPi where the Pi

are closed points on X and the ni integers. The integer n :=
∑

ni[k(Pi) : k] is
called the degree of z. Denote by Z0(X) the free abelian group of 0-cycles on
X. For each k-torus S and each positive integer i, there is a natural additive
pairing

ρ : Z0(X) ×H i
ét(X,S) → H i

ét(k, S) (1.8)

sending a pair consisting of a closed point P ∈ Z0(X) and an element
ε ∈ H i

ét(X,S) to the corestriction in H i
ét(k, S) of the pullback ε(P ) of ε in

H i
ét(k(P ), S). It can be proved that this pairing factorizes through rational

equivalence, but we do not need this.
If z =

∑
niPi is a 0-cycle, write ρ(z) : H i

ét(X,T ) → H i
ét(k, T ) for the

homomorphism sending ε ∈ H i
ét(X,T ) to ρ(z, ε) ∈ H i

ét(k, T ). This gives a
retraction of the functorial map from H i

ét(k, T ) to H i
ét(X,T ) when z is of

degree one. Then by Proposition 1.7, there exists a universal torsor over X.
Let T be the Néron–Severi torus of X and T a universal X-torsor. Let

φT : Z0(X) → H1
ét(k, T ) be the homomorphism which sends z ∈ Z0(X) to

ρ(z, [T ]) (see (1.8)), and Z0(X)0 the subgroup of Z0(X) consisting of 0-cycles
of degree zero.

1.9 Proposition The restriction of φT to Z0(X)0 is independent of the
choice of universal torsor T .

Proof Use (1.4) and the fact that

Z0(X)0 × Im(H1
ét(k, T ) → H1

ét(X,T )) ⊆ Ker(ρ). �

We therefore drop the index and write φ for this map Z0(X)0 → H1
ét(k, T ).

For other constructions of φ that do not depend on the assumption that a
universal torsor exists, see [CT/S1, Section 1] and the next section.

The following almost trivial lemma from homological algebra will be use-
ful.
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1.10 Lemma Let L be a finitely generated torsion-free discrete G-module.
Then

(a) H1(G,Z) = 0.

(b) H1(G, L) = ExtG(Z, L) is finite.

(c) Let ε1, ε2, . . . , εr ∈ ExtG(Z(r), L) and ε ∈ ExtG(Z(r), L) correspond to
{εj}r

j=1 ∈
⊕

ExtG(Z, L).

Then there is an extension of discrete G-modules

0 → L → M → Z(r) → 0 (∗)

such that

(i) Ker(ExtG(Z, L) → ExtG(Z,M)) is the subgroup generated by ε1, ε2, . . . ,
εr,

(ii) the connecting homomorphism HomG(L,L) → ExtG(Z(r), L) induced by
(∗) sends id ∈ HomG(L,L) to ε.

Now let k be a number field. Denote by Ωk the set of places of k, and by
kv the v-adic completion of k for a place v. Choose an algebraic closure kv of
kv and an embedding k ⊂ kv for each v ∈ Ωk. We may then regard the Galois
group Gv := Gal(kv/kv) as a subgroup of G = Gal(k/k) for each v ∈ Ωk.

If M is a discrete G-module and i a positive integer, write

Xi(k,M) := Ker
(
H i(G,M) →

∏
all v

H i(Gv,M)
)
.

In particular, if M is the group S(k) of k-points on a k-torus S, we write
Xi(k, S) := Xi(k, S(k)). Finally, set

Q1(k, S) := Coker
(
H1(G, S(k)) →

⊕
all v

H1(Gv, S(kv))
)
.

The following result from class field theory is due to Nakayama and Tate
[Ta1]. It plays an important rôle in [CT/S2].

1.11 Theorem Let k be a number field and S a k-torus. Then there is a
perfect pairing

X2(k, S) ×X1(k, Ŝ) −→ Q/Z
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which is functorial under homomorphisms of k-tori. The kernel of the in-
duced epimorphism from Hom(H1(G, Ŝ),Q/Z) to X2(k, S) is isomorphic to
Q1(k, S). Moreover, H3

ét(k, S) = 0 for any split k-torus S.

The next proposition generalizes a result in Section 3.3 in [CT/S2]. If
we use the word “locally” for a property which holds for Xv := kv × X for
each place v ∈ Ωk, then we can express Proposition 1.12 in the following
way. There exists a universal torsor over X if and only if there exists one lo-
cally, and moreover every locally constant Azumaya algebra over X is Brauer
equivalent to a product of a locally trivial Azumaya algebra and a constant
Azumaya algebra. We can replace H̃2

ét by H2
ét in (i), since any “locally” con-

stant Brauer class belongs to H̃2
ét(X,Gm). We prefer the formulation here

since the universal torsors are related to H̃2
ét(X,Gm) rather than H2

ét(X,Gm).

1.12 Proposition Let k be a number field and X a smooth proper geo-
metrically connected variety over k for which PicX is finitely generated and
torsion-free. Then the following statements are equivalent.

(i) The map from Ker(H̃2
ét(X,Gm) →

∏
all v H̃

2
ét(Xv,Gm)) to

Ker
(
H̃2

ét(X,Gm)/ImH2
ét(k,Gm) →

∏
all v

H̃2
ét(Xv,Gm)/ImH2

ét(kv,Gm)
)

is surjective, and for each place v ∈ Ωk there exists a universal torsor
over Xv.

(ii) There exists a universal torsor over X.

Proof We apply Lemma 1.10 for the G-module L = PicX and choose a set
of generators ε1, ε2, . . . , εr of Ker(ExtG(Z,PicX) →

∏
all v ExtGv(Z,PicX)).

Let ε ∈ ExtG(Z(r), L) correspond to
⊕r

j=1 εj ∈ ExtG(Z, L). We then obtain
an exact sequence of discrete G-modules

0 → PicX → M → Z(r) → 0 (1.13)

such that

X1(k,PicX) = Ker(H1(G,PicX) → H1(G,M)); and (1.14)

id ∈ HomG(PicX,PicX) maps to ε under the connecting
homomorphism HomG(PicX,PicX) → ExtG(Z(r),PicX)
induced by (1.13).

(1.15)

the extension (1.13) is split as a sequence of Gv-modules
for each v ∈ Ωk.

(1.16)
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Now apply D(. . . ) to (1.13) and consider the dual sequence of k-tori:

1 → R → S → T → 1, (1.17)

where T is the Néron–Severi torus of X and R =
∏r

j=1 Gm,k. From (1.14)
and the arithmetical duality result in Theorem 1.11 we obtain that:

X2(k, S) ⊆ Ker(H2
ét(k, S) → H2

ét(k, T )) (1.18)

and from (1.16) that the sequences of kv-tori

1 → Rv → Sv → Tv → 1 (1.19)

induced from (1.17) split for all places v of k.

Proof of (i) ⇒ (ii) Consider the following commutative diagram with
exact rows and columns

H2
ét(k,R) → H̃2

ét(X,R) → ExtG(R̂,PicX)� � �
H2

ét(k, S) → H̃2
ét(X,S) → ExtG(Ŝ,PicX)� � �

H2
ét(k, T ) → H̃2

ét(X,T ) → ExtG(T̂ ,PicX)�
0

(1.20)

where the horizontal sequences are those in (1.5) and the vertical sequences
are induced by (1.17). The complex in the second column is exact since (1.17)
splits over k. The map H2

ét(k, S) → H2
ét(k, T ) is surjective since H3

ét(k,R) = 0
for a number field k (see (1.8)).

In order to prove that there is a universal torsor, it suffices by Propo-
sition 1.7 to show that H2

ét(k, T ) → H̃2
ét(X,T ) is injective. So let κ ∈

Ker(H2
ét(k, T ) → H̃2

ét(X,T )) and lift κ to an element β ∈ H2
ét(k, S). Then, by

exactness of (1.20), there exists γ in Ker(H̃2
ét(X,R) → ExtG(Ŝ,PicX)) with

the same image as β in H̃2
ét(X,S). Let γv be the image of γ in H̃2

ét(Xv, R) and
consider the following commutative diagram with exact rows and columns.

0 0 0� � �
0 → H2

ét(kv, Rv) → H̃2
ét(Xv, Rv) → ExtGv(R̂v,PicXv)� � �

0 → H2
ét(kv, Sv) → H̃2

ét(Xv, Sv) → ExtGv(Ŝv,PicXv)

(1.21)
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The zeros in the columns come from the splitting property in (1.16) and
(1.19), and the zeros in the rows from the existence of universal torsors over

Xv (see Proposition 1.7). Since γ goes to zero in ExtG(Ŝ,PicX), we conclude

from (1.21) that γv ∈ Im(H2
ét(kv, Rv) → H̃2

ét(Xv, Rv)) for each v ∈ Ωk. On

considering the images of γ in H̃2
ét(X,Gm) under the maps from H̃2

ét(X,R)
induced by the r projections from R =

∏r
j=1 Gm,k to Gm, we deduce from

the first assumption in (i) that there exists α ∈ H2
ét(k,R) that maps to

γv in H2
ét(Xv, Rv) for each v ∈ Ωk. Let α̃ be the image of α in H2

ét(k, S).

By the choice of γ, we conclude that β − α̃ goes to 0 in
∏

all v H̃
2
ét(Xv, Sv)

and by the injectivity of the functorial maps H2
ét(kv, Sv) → H̃2

ét(Xv, Sv) that
β − α̃ ∈ X2(k, S). But then the image κ of β − α̃ in H2

ét(k, T ) is equal to
zero (see (1.18)). This completes the proof of (i) ⇒ (ii).

Proof of (ii) ⇒ (i) Let T be a universal torsor over X. Then Tv := kv ×T
is a universal torsor over Xv for each v ∈ Ωk. To prove the first part of (i),
consider the following commutative diagram with exact rows

H1
ét(k, T ) → H1

ét(X,T ) → HomG(T̂ ,PicX) → 0� � �
H2

ét(k,R) → H̃2
ét(X,R) → ExtG(R̂,PicX) → 0

(1.22)

Let γ ∈ H̃2
ét(X,R) be the image of [T ] ∈ H1

ét(X,T ) and γ1, γ2, . . . , γr the

images of γ in H̃2
ét(X,Gm) under the maps from H̃2

ét(X,R) induced by the
r projections from R =

∏r
j=1 Gm,k to Gm. Then γ1, γ2, . . . , γr have images

ε1, ε2, . . . , εr in ExtG(R̂,PicX). Thus by the choice of εj (see (1.6)) we get
that the kernel of the map

H̃2
ét(X,Gm)/ImH2

ét(k,Gm) →
∏
all v

H̃2
ét(Xv,Gm)/ImH2

ét(kv,Gm)

is generated by the images of γ1, γ2, . . . , γr in H̃2
ét(X,Gm)/ImH2

ét(k,Gm). To
verify the first condition in (i), it thus suffices to show that the elements

γ1, γ2, . . . , γr belong to Ker(H̃2
ét(X,Gm) →

∏
all v H̃

2
ét(Xv,Gm)). That is, we

must prove that [T ] belongs to the kernel of the composite map:

H1
ét(X,T ) −→ H̃2

ét(X,R) −→
∏
all v

H̃2
ét(Xv, Rv).

But [Tv] ∈ H1
ét(Xv, Tv) maps to zero in H̃2

ét(Xv, Rv) since the sequence 1 →
Rv → Sv → Tv → 1 splits. This completes the proof of Proposition 1.12. �
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Now suppose that we are given a 0-cycle zv on Xv for each place v ∈ Ωk.
If S is a k-torus, let Sv be the kv-torus obtained by base extension and let

ρv : Z0(Xv) ×H i
ét(Xv, Sv) −→ H i

ét(kv, Sv) (1.23)

be the pairing described in (1.8). We denote this map by ρv for all k-tori
S and all positive integers i. Let ρv(zv) : H i

ét(Xv, Sv) → H i
ét(kv, Sv) be the

homomorphism sending εv ∈ H i
ét(Xv, Sv) to ρv(zv, εv) ∈ H i

ét(kv, Sv).
Now recall the fundamental exact sequence of Hasse (see, for example,

Tate [Ta2])

0 → H2
ét(k,Gm) →

⊕
all v

H2
ét(kv,Gm) → Q/Z → 0. (1.24)

The map from H2
ét(k,Gm) is the direct sum over v ∈ Ωk of the functorial maps

H2
ét(k,Gm) → H2

ét(kv,Gm). The map to Q/Z is the direct sum of the local
maps invv : H2

ét(kv,Gm) → Q/Z which are isomorphisms for non-archimedean
places. The fact that the sum of all local invariants is 0 for an element of the
Brauer group H2

ét(k,Gm) of k is called the reciprocity law.
Manin [Ma] noticed that the reciprocity law gives rise to the following

necessary condition for the existence of a 0-cycle of degree r on X.

There exists a set of 0-cycles zv of degree r on Xv indexed by
v ∈ Ωk s.t.

∑
all v invv(ρv(zv))(Av) = 0 for all A ∈ H2

ét(X,Gm).
(1.25)

We now relate the Brauer group obstruction to the Hasse principle for
0-cycles of degree one to another obstruction based on universal torsors. The
following result is an immediate corollary of Proposition 1.12.

1.26 Proposition Let k be a number field and X a smooth proper geometri-
cally connected k-variety for which PicX is finitely generated and torsion-free.
Suppose given a 0-cycle of degree one zv on Xv for each place v ∈ Ωk. Then
the following statements are equivalent.

(i) Manin’s reciprocity condition
∑

all v invv(ρv(zv))(Av) = 0 holds for all

A ∈ Ker
(
H̃2

ét(X,Gm) →
∏

all v H̃
2
ét(Xv,Gm)/ImH2

ét(kv,Gm)
)
.

(ii) There exists a universal torsor over X.

Proof Given 0-cycles zv of degree one on Xv for each place v ∈ Ωk, we have
to prove that the conditions (1.12i) and (1.26i) are equivalent. It was already
noticed after (1.8) that the existence of a 0-cycle of degree one on Xv implies



Per Salberger 263

the existence of a universal torsor over Xv. It thus suffices to show that the
subgroup of

Ker
(
H̃2

ét(X,Gm) →
∏
all v

H̃2
ét(Xv,Gm)/ImH2

ét(kv,Gm)
)

generated by Ker
(
H̃2

ét(X,Gm) →
∏

all v H̃
2
ét(Xv,Gm)

)
and Im(H2

ét(k,Gm))
equals the subgroup of elements A satisfying

∑
all v invv(ρv(zv))(Av) = 0.

This is a formal consequence of the Hasse exact sequence of Brauer groups
(1.24) and the fact that for all places v of k, the map ρv(zv) defines a retraction

of H2
ét(kv,Gm) → H̃2

ét(Xv,Gm). �
We now consider Manin’s obstruction to the Hasse principle for 0-cycles

of degree one given by arbitrary elements in H̃2
ét(X,Gm) and relate it to the

existence of universal torsors with certain properties. The following result
was proved in [CT/S2, 3.5.1] in the case of rational points.

1.27 Theorem Let k be a number field and X a smooth proper geometri-
cally connected k-variety for which PicX is finitely generated and torsion-free.
Suppose given a 0-cycle zv of degree one on Xv for each place v ∈ Ωk. Then
the following statements are equivalent.

(i) Manin’s reciprocity condition
∑

all v invv(ρv(zv))(Av) = 0 holds for all

A ∈ H̃2
ét(X,Gm).

(ii) There exists a universal torsor T over X such that ρv(zv)([Tv]) = 0 in
H1

ét(kv, T ) for each v ∈ Ωk.

Proof We again apply Lemma 1.10 for the G-module L = PicX. Let
ε1, ε2, . . . , εr be generators of ExtG(Z,PicX), and let ε ∈ ExtG(Z(r), L) cor-
respond to {εj}r

j=1 ∈ ExtG(Z,PicX). We then obtain an exact sequence of
discrete G-modules:

0 → PicX → M → Z(r) → 0 (1.28)

such that

H1(G,M) = 0; and (1.29)

id ∈ HomG(PicX,PicX) maps to ε ∈ ExtG(Z(r),PicX)
under the connecting homomorphism induced by (1.28).

(1.30)

Now apply D(. . . ) to (1.28) and consider the dual sequence of k-tori.

1 → R → S → T → 1, (1.31)
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where T is the Néron–Severi torus of X and R =
∏r

j=1 Gm,k. From (1.29)
and the arithmetical duality result in Theorem 1.11 we obtain

Q1(k, S) = 0 and X2(k, S) = 0. (1.32)

Proof of (i) ⇒ (ii) Consider the following commutative diagram with
exact rows and columns:

H1
ét(k, S) → H1

ét(X,S) → HomG(Ŝ,PicX)� � �
H1

ét(k, T ) → H1
ét(X,T ) → HomG(T̂ ,PicX)� � �

H2
ét(k,R) → H̃2

ét(X,R) → ExtG(R̂,PicX)� � �
H2

ét(k, S) → H̃2
ét(X,S) → ExtG(Ŝ,PicX)

(1.33)

deduced from (1.31) and the spectral sequence in (1.3). We know from Propo-
sition 1.26 that there exists a universal torsor over X. Let [T ] ∈ H1

ét(X,T )

be the class of one such torsor T and consider the images γ in H̃2
ét(X,R) and

γv ∈ H̃2
ét(Xv, Rv), v ∈ Ωk, of [T ]. Then, since R =

∏r
j=1 Gm,k, we deduce

from Manin’s reciprocity condition (i) and the Hasse exact sequence (1.24)
that there exists β ∈ H2

ét(k,R) that maps to ρv(zv)(γv) in H2
ét(kv, Rv) for each

v ∈ Ωk. But ρv(zv)(γv) ∈ Ker(H2
ét(kv, Rv) → H2

ét(kv, Sv)) since it is the image
of ρv(zv)([Tv]) ∈ H1

ét(kv, Tv) in H2
ét(kv, Rv). Therefore, β ∈ Ker(H2

ét(k,R) →
H2

ét(k, S)) since X2(k, S) = 0 (cf. (1.32)). Let α ∈ H1
ét(k, T ) be a lifting of β

and αv the image of α in H1
ét(kv, Tv). Then ρv(zv)([Tv])−αv vanishes for all but

finitely many v ∈ Ωk and maps to 0 in H2
ét(kv, Rv) for all v ∈ Ωk. This com-

bined with the fact that Q1(k, S) = 0 implies that there exists σ ∈ H1
ét(k, S)

whose image σ in H1
ét(kv, Tv) is ρv(zv)([Tv]) − αv for each v ∈ Ωk. Let σ̃

be the image of σ in H1
ét(X,T ) and α̃ the image of α in H1

ét(X,T ). Then,
since α̃ + σ̃ belongs to the image of H1

ét(k, T ) → H1
ét(X,T ) it follows that

[T̃ ] := [T ] + α̃ + σ̃ is the class of a torsor T̃ of the same type as T . Further,
ρv(zv)([T̃v]) = 0 for all v ∈ Ωk. This completes the proof of (i) ⇒ (ii).

Proof of (ii) ⇒ (i) Let T be a universal torsor over X with the property
that ρv(zv)([Tv]) = 0 in H1

ét(kv, T ) for all v ∈ Ωk. We now proceed as in
the proof of Proposition 1.12, (ii) ⇒ (i) and consider the image γ of [T ] ∈
H1

ét(X,T ) in H̃2
ét(X,R) under the vertical map in (1.33), and the images

γ1, γ2, . . . , γr of γ in H̃2
ét(X,Gm) under the maps from H̃2

ét(X,R) induced by
the r projections from R =

∏r
j=1 Gm,k to Gm. Then ρv(zv)(γj) = 0 for all
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j = 1, . . . , r and all places v of k. This together with the reciprocity law (1.24)

implies that (zv)v∈Ωk
satisfies Manin’s condition for any A ∈ H̃2

ét(X,Gm) in
the subgroup Γ generated by γ1, γ2, . . . , γr and the image of H2

ét(k,Gm). But
the images ε1, ε2, . . . , εr in ExtG(Z,PicX) of γ1, γ2, . . . , γr were chosen to

generate ExtG(Z,PicX). Thus, Γ = H̃2
ét(X,Gm), as was to be proved.

1.34 Corollary Let k be a number field and X a smooth proper geomet-
rically connected k-variety for which PicX is finitely generated and torsion-
free. Suppose given a 0-cycle zv of degree one on Xv for each place v such that
Manin’s reciprocity condition

∑
all v invv(ρv(zv))(Av) = 0 holds for all A ∈

H̃2
ét(X,Gm). Then for each k-torus S and each element τ in HomG(Ŝ,PicX)

there exists an X-torsor S under S of type τ such that ρv(zv)([Sv]) = 0 in
H1

ét(kv, S) for all v ∈ Ωk.

Proof We know from (1.24) that there exists a universal torsor T over X
such that ρv(zv)([Tv]) = 0 in H1

ét(kv, Tv) for each v ∈ Ωk. Let S := T ×T S
be the torsor under S induced from T by the k-homomorpism D(τ) : T → S
dual to τ . Then S satisfies the above conditions.

1.35 Theorem Let k be a number field and X a smooth proper geometrically
connected k-variety for which PicX is finitely generated and torsion-free. Let
T be the Néron–Severi torus of X and r an integer. Let zv be a 0-cycle of
degree r on Xv for each place v ∈ Ωk such that Manin’s reciprocity condition∑

all v invv(ρv(zv))(Av) = 0 holds for all A ∈ H̃2
ét(X,Gm). Then for each

X-torsor under T there exists another X-torsor T of the same type such that
ρv(zv)([Tv]) = 0 for all v ∈ Ωk.

Proof An examination of the proof of (i) ⇒ (ii) in (1.24) reveals that we
only used the hypothesis that r = 1 to prove that there exists a universal
torsor T . The rest of the arguments is valid for any r and any T -torsor
T . �

We now make use of the ideas of [CT/S2, 2.3]. Let k be a perfect field
and let X be as in (1.1). Let U be an open k-subvariety of X with PicU = 0.
If S is an X-torsor, let SU be the U -torsor obtained by restriction.

Consider the exact sequence of G-modules for the absolute Galois group
G := Gal(k/k).

0 → k[U ]∗/k
∗ → DivZ X → PicX → 0, (1.36)

where Z is the complement of U in X, and DivZ X the group of Weil divisors
on X with support in Z. On applying D(. . . ) we obtain a dual exact sequence
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of k-tori

1 → T → N → V → 1. (1.37)

The spectral sequence (1.3) and the exact sequence (1.37) give rise to the
commutative diagram

HomG(V̂ , k[U ]∗)
δ−→ ExtG(T̂ , k[U ]∗)��

��

H0
ét(U, V )

δ−→ H1
ét(U, T )

(1.38)

The second vertical map is onto since PicU = 0 (see [CT/S2, 1.5.1]).

1.39 Proposition Let ε ∈ H1
ét(U, T ). Then the following two conditions

are equivalent.

(i) There exists a universal X-torsor T such that [TU ] = ε.

(ii) There is a section σ ∈ HomG(V̂ , k[U ]∗) of the obvious map ψ : k[U ]∗ →
k[U ]∗/k

∗
that maps to ε in H1

ét(U, T ).

Proof See the “description locale des torseurs” in Section 2.3 of [CT/S2].
Now assume that (1.39ii) holds. Then for any k-torus S there is a com-

mutative diagram

ExtG(Ŝ, k
∗
) → ExtG(Ŝ, k[U ]∗) → ExtG(Ŝ, k

∗
)��

��
��

H1
ét(k, S) → H1

ét(U, S) → H1
ét(k, S)

(1.40)

defined in the following way. The vertical isomorphisms come from the spec-
tral sequence (1.3) (see [CT/S2, 1.5.1]). The horizontal maps in the first
square are the functorial maps and the horizontal map in the second square
is induced by the G-retraction σψ/id : k[U ]∗ → k

∗
of the inclusion k

∗ ⊂ k[U ]∗.
By completing the second square we obtain a homomorphism:

rU : H1
ét(U, S) → H1

ét(k, S) (1.41)

which is a retraction of the functorial map from H1
ét(k, S) to H1

ét(U, S).
Let r : H1

ét(X,S) → H1
ét(k, S) be the composite of the restriction map

from H1
ét(X,S) to H1

ét(U, S) and rU .
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1.42 Proposition Let T be a universal X-torsor and σ ∈ HomG(V̂ , k[U ]∗) a

section of ψ : k[U ]∗ → V̂ such that σ maps to the class [TU ] of TU in H1
ét(U, T )

under the map in (1.38). Then the following hold:

(a) r is a retraction of the functorial map from H1
ét(k, S) to H1

ét(X,S);

(b) r is functorial under homomorphisms of k-tori;

(c) r([T ]) = 0;

(d) r depends only on [T ] and not on the choice of σ.

Proof (c) To do this, we use the following commutative diagram:

HomG(V̂ , k[U ]∗)
δ−→ ExtG(T̂ , k[U ]∗)� �

HomG(V̂ , k[U ]∗/k
∗
)

δ−→ ExtG(T̂ , k[U ]∗/k
∗
)� �

HomG(V̂ , k[U ]∗)
δ−→ ExtG(T̂ , k[U ]∗)

(1.43)

where the horizontal maps are induced by (1.37) and the vertical maps by
ψ and σ. Then δ(σ) corresponds to [TU ] under the isomorphism between

ExtG(T̂ , k[U ]∗) and H1
ét(U, T ). Therefore, rU([TU ]) = 0 if and only if δ(σ)

maps to itself under the endomorphism of ExtG(T̂ , k[U ]∗) induced by σψ.
But this is clear from the commutative diagram (1.43).

(d) Let S be an X-torsor under S of type χ([S]) ∈ HomG(Ŝ,PicX).
Then S is of the same type as the X-torsor T ×T S obtained from the k-
homomorpism D(τ) : T → S dual to τ = χ([S]). Therefore, [S] − [T ×T S] ∈
H1

ét(X,S)) is the image of a unique element α in H1
ét(k, S) by (1.4). Also,

r([T ×T S]) = 0 by (b) and (c). Hence, r([S]) = α by (a), thereby completing
the proof. �

Now suppose there is a 0-cycle z of degree one on X. Then (cf. (1.8))
there is a natural retraction ρ(z) : H1

ét(X,S) → H1
ét(k, S) associated to z for

each k-torus S which is functorial under homomorphisms of k-tori.

1.44 Proposition Let k, X be as above and suppose that there exists a
universal X-torsor T such that ρ(z)([T ]) = 0. Let S be a k-torus and r the
retraction from H1

ét(X,S) to H1
ét(k, S) defined by [T ] (see (1.42d)). Then the

two maps ρ(z) and r coincide.
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Proof The map ρ(z) satisfies the same axioms (1.42a–c) as r. It therefore
follows from the proof of (1.42d) that the two maps coincide. �

One can give another proof of Proposition 1.44 based on the G-retraction
from k[U ]∗ to k

∗
associated to z.

The following result will be used in the next section in the case S = T .

1.45 Corollary Let k be a number field and X a smooth proper geometri-
cally connected k-variety for which PicX is finitely generated and torsion-free.
Let S be a k-torus. Suppose that for each v we are given a 0-cycle zv of degree
one on Xv := X ×k kv and an Xv-torsor Sv under Sv such that the following
hold.

(i) Manin’s reciprocity condition
∑

all v invv(ρv(zv))(Av) = 0 holds for all

A ∈ H̃2
ét(X,Gm).

(ii) There exists an element η of H1
ét(k(X), S ×k k(X)) having the same

image as [Sv] in H1
ét(kv(X), Sv ×kv kv(X)) for each v ∈ Ωk.

Then there exists an element α ∈ H1
ét(k, S) with image equal to ρv(zv)([Sv])

in H1
ét(kv, Sv) for every v ∈ Ωk.

Proof Let U be an open nonempty subset of X and v ∈ Ωk any place
of k. We first show that there exists a 0-cycle uv of degree one on Uv :=
U ×k kv with ρv(uv)(Av) = ρv(zv)(Av) for all Av ∈ H2

ét(Xv,Gm) and such
that ρv(uv)([Sv]) = ρv(zv)([Sv]). By the additivity and functoriality of ρv

under corestrictions it suffices to do this in the case where zv is a kv-point Pv.
Let Ov be an affine open neighbourhood of Pv. We may then represent

each element in H2
ét(Xv,Gm) by an Azumaya algebra over Ov (see [Mi, p. 149])

and consider the corresponding Severi–Brauer scheme over Ov (cf. op. cit.).
We shall only consider elements in the finite kernel of the specialization map
from H̃2

ét(Xv,Gm) to H2
ét(kv(Pv),Gm). Let Πv be the fibre product over Ov

of the Severi–Brauer schemes corresponding to restrictions of these elements
in H̃2

ét(Xv,Gm). Then Πv is a smooth proper Ov-scheme and its fibre over Pv

is a multiprojective space over kv.
Let Wv be the restriction over Ov of an Xv-torsor of the same type as

Sv which is trivial over Pv. It then follows from the v-adic implicit function
theorem applied to the fibre product of Πv and Wv over Ov that there exists
a kv-point on Uv ∩ Ov that can be lifted to kv-points on Πv and Wv. This
kv-point has all the desired properties. We may therefore replace zv by a
0-cycle on Uv for each v without changing the hypothesis in Corollary 1.45.

Now choose an open subset U of X such that PicU = 0 and such that η
is the restriction of an element ε ∈ H1

ét(U, S). Assume, as we may, that zv is
a 0-cycle on Uv for each v ∈ Ωk.
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Now apply Theorem 1.27. Then there exists a universal torsor T over
X such that ρv(zv)([Tv]) = 0 in H1

ét(kv, T ) for all v ∈ Ωk. Also, let σ be
a G-module homomorphism from k[U ]∗/k

∗
to k[U ]∗ as in Proposition 1.39.

Finally, let rU be the retraction from H1
ét(U, S) to H1

ét(k, S) in (1.41) defined
by means of σ.

Then α = rU(ε) ∈ H1
ét(k, S) is the desired element with image ρv(zv)([Sv])

in H1
ét(kv, Sv) for all v ∈ Ωk. To show this, we fix one place v and change

the notation so that k = kv. We also omit the index v for all varieties,
morphisms, cohomology groups defined over k = kv. Thus U , resp. ρ(z)([S]),
will mean Uv, resp. ρv(zv)([Sv]), and ε, T will now mean the images after
base extension to kv. We shall also make use of the functoriality of r and ρ(z)
under extensions of the base field without further comments.

Then we get an element ε ∈ H1
ét(U, S), a 0-cycle z of degree one on U , a

universal X-torsor T with ρ(z)([T ]) = 0 and an X-torsor S under S satisfying
the following condition:

The image of ε ∈ H1
ét(U, S) in H1

ét(k(X), S) equals that of the
class [S] ∈ H1

ét(X,S) in H1
ét(k(X), S).

(∗)

But it follows from the commutative diagram (cf. (1.40))

ExtG(Ŝ, k[U ]∗) → ExtG(Ŝ, k(X)∗)��
��

H1
ét(U, S) → H1

ét(k(X), S)

that the restriction map from H1
ét(U, S) to H1

ét(k(U), S) is injective. There-
fore, ε = [SU ], and hence rU(ε) = r([S]). Moreover, r([S]) = ρ(z)([S]) by
Proposition 1.44. Hence rU(ε) = ρ(z)([S]), as was to be proved.

In Corollary 1.45 and some other results in this section we have assumed
that the functorial maps from PicX to Pic(kv ×X) are isomorphisms for all
v ∈ Ωk. This was used to guarantee that the base extensions of universal X-
torsors to torsors over Xv remain universal. We therefore include the following
result for which we could find no reference.

1.46 Proposition Let k be an algebraically closed field, and let X be a
smooth and proper k-variety for which PicX is finitely generated. Then the
functorial map from PicX to Pic(X×E) is an isomorphism for any extension
field E of k.

Proof The assumption implies that H1(X,OX) = 0. Thus Pic(X × V ) =
PicX×PicV for any (integral) k-variety V by the exercise on p. 292 in [Ha].
(The assumption that X is projective is not necessary since Grothendieck’s
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theorem on pp. 290–291 in op. cit. also holds for proper morphisms.) Now
make use of the fact that E is the union of its finitely generated k-subalgebras
A. Therefore, there are canonical isomorphisms

lim−→Pic(SpecA) = Pic(E) = 0 and

Pic(X × E) = lim−→Pic(X × SpecA) = PicX ⊕ lim−→Pic(SpecA) = PicX,

as was to be proved.

2 K theory and obstructions to the Hasse

principle

Let k be a perfect field, k an algebraic closure of k and G := Gal(k/k) the
absolute Galois group of k. Let X be a smooth proper k-variety such that
X := k ×X is connected.

Then there is a complex of discrete G-modules (cf. [Bl])⊕
σ∈X2

K2(k(σ))
tame−−−→

⊕
γ∈X1

k(γ)∗
div−−→

⊕
X0

Z, (2.1)

where X i denotes the set of points of dimension i. The first map is given by
tame symbols and the second is the usual divisor map. Let M be the cokernel
of the first map and

⊕0
X0

Z the image of the second. (This notation will
become natural later after (2.4).) Then (2.1) induces a short exact sequence
of discrete G-modules

0 → Ker(div)/Im(tame) → M →
⊕0

X0
Z → 0. (2.2)

Let Zi(X) be the free abelian group of cycles of dimension i on X; write
Ri(X) for the subgroup of i-cycles rationally equivalent to zero and Chi(X) :=
Zi(X)/Ri(X) for the Chow group of cycles of dimension i on X. The degree
of a 0-cycle on X depends only on its rational equivalence class since X is
proper. Let A0(X) be the subgroup of Ch0(X) of 0-cycles of degree 0. Finally,
define the map

π : Ch1(X) ⊗Z k
∗ −→ Ker(div)/Im(tame)

by the inclusions:

Z1(X) ⊗Z k
∗

=
⊕
X1

k
∗ ⊂ Ker(div) and R1(X) ⊗Z k

∗ ⊂ Im(tame).

Now let k, k, G, X, X be as above and assume in addition that the
following holds.
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2.3 Assumptions

(i) Ch1(X) and Pic(X) = Chn−1(X) are finitely generated and torsion-free.

(ii) The intersection pairing ∪ : Ch1(X) × Chn−1(X) → Z is perfect.

(iii) π : Ch1(X) ⊗Z k
∗ → Ker(div)/g Im(tame) is an isomorphism.

Then ∪ and π define an isomorphism between the Néron–Severi torus
T = D(PicX) and Ker(div)/ Im(tame). Suppose further that

A0(X) = 0. (2.4)

Then the Galois cohomology of (2.2) gives rise to an exact sequence

Z0(X)0 → H1(G, T (k)) → H1(G,M)

→ Z/deg(Z0(X)) → H2(G, T (k)), (2.5)

where Z0(X) is the group of 0-cycles of degree 0. Denote by φ′ the map
from Z0(X)0 to H1

ét(k, T ) obtained from (2.5) by identifying H1(G, T (k)) with
H1

ét(k, T ).

2.6 Example Let k be a perfect field and X a smooth proper rational
geometrically connected k-surface. Then Bloch [Bl] showed that (2.3) and
(2.4) hold and from that deduced the map φ′ described above. He also noticed
that the values of φ′ only depend on the rational equivalence class in Z0(X).

2.7 Proposition Let k, k, G, X, X be as above and assume in addition
that (2.3) and (2.4) hold. Suppose that there exists a universal torsor over X.
Then the maps φ (see Proposition 1.9) and φ′ coincide.

Proof This is stated and proved in [CT/S1, Section 1] for rational surfaces,
but the proof uses no other properties of rational surfaces than (2.3) and
(2.4).

Now consider a discrete valuation ring A containing k; let K be its field
of fractions and F its residue field, and suppose that these fields are perfect.
For a closed point P on XK , write A(P ) for the integral closure of A in K(P ).
The valuative criterion of properness for XA → SpecA implies that there is
a unique A-morphism g : SpecA(P ) → XA extending P → XK . Let

sp: Z0(XK) → Z0(XF )
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be the specialization homomorphism that sends a closed point P to the cycle
associated to the 0-dimensional closed subscheme SpecA(P )×Spec A F of XF .
Then extend sp to arbitrary 0-cycles by additivity.

It is easy to see that sp sends 0-cycles of degree zero to 0-cycles of degree
zero. Denote by sp0 the associated map from Z0(XK)0 to Z0(XF )0. Then the
obvious diagram

Z0(X)0 id−→ Z0(X)0� �
Z0(XK)0 sp0

−→ Z0(XF )0

(2.8)

commutes and sp and sp0 have the expected functoriality properties under
field extensions of k. It can be shown that sp induces a specialization map of
Chow groups of 0-cycles, but we shall not need this.

2.9 Proposition Suppose that there exists a universal torsor T over X,
and let φT be the map described in Proposition 1.9. Then the following holds.

(a) The functorial map from H1
ét(SpecA, TA) to H1

ét(K,TK) is injective.

(b) φT (Z0(XK)) ⊆ Im(H1
ét(SpecA, TA) → H1

ét(K,TK)).

(c) The following diagram commutes

Z0(XK)
sp−−−−→ Z0(XF )�φT

�φT

Im(H1
ét(SpecA, TA) → H1

ét(K,TK))
Θ−→ H1

ét(F, TF )

for the functorial map Θ from H1
ét(SpecA, TA) (cf. (a)).

Proof (a) See [CT/S3, Section 4].
(b) The argument is well known (see, for example, [CT/S1, p. 428]). The

XK-torsor TK extends to an XA-torsor TA under TA, and any closed point
P on XK can be extended to a morphism SpecA(P ) → XA (see the con-
struction of sp). Combined with the existence of corestriction maps from
H1

ét(SpecA(P ), TA(P )) to H1
ét(SpecA, TA), this implies that φ(Z0(XK)) ⊆

H1
ét(SpecA, TA).

(c) The horizontal maps factorize over the completion of K. We may thus
assume that A is complete and hence that A(P ) is discrete for each closed
point P . By using obvious functoriality properties under corestriction of the
maps involved, one reduces to prove that Θ(φT (P )) = φT (σ(P )) for a rational
point P . To see this, note that both composites give the pullback of TA at
the closed point on XF determined by SpecA(P ) → XA.
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2.10 Lemma Let k be a field of characteristic 0, and X, Y two smooth,
proper, geometrically connected k-varieties. Suppose that (2.3) and (2.4) hold
for X := X ×k k for any algebraically closed field k containing k, and that
there exists a universal torsor over X. Then for any 0-cycle y on Y , the
following holds:

(a) The map ρ(y) : H1
ét(Y, T ) → H1

ét(k, T ) factorizes through a map ρ′(y)
from Im

(
H1

ét(Y, T ) → H1
ét(k(Y ), T ×k k(Y )

)
to H1

ét(k, T ).

(b) φ′(Z0(X ×k k(Y ))0) ⊆ Im
(
H1

ét(Y, T ) → H1
ét(k(Y ), T ×k k(Y ))

)
(c) φ′(Z0(X ×k k(Y ))0) maps to φ′(Z0(X)0) under ρ′(y).

Proof (a) See [CT/S2, 2.7.5].
(b) By [CT/S1, p. 428], it is known that

Im
(
H1

ét(Y, T ) → H1
ét(k(Y ), T ×k k(Y ))

)

=
⋂
Q

Im
(
H1

ét(OY,Q, T ×k OY,Q) → H1
ét(k(Y ), T ×k k(Y ))

)
,

where Q runs over all points of codimension one on Y . The desired inclusion
is therefore a consequence of (2.9b) and the fact that φ = φ′ (see Proposi-
tion 2.7).

(c) Let y =
∑

niyi, where the yi are closed points on Y . Since ρ is additive
with respect to Z0(Y ), it suffices to prove the statement for each ρ′(yi). By
factorizing ρ(yi) through H1

ét(Y ×kk(yi), T×kk(yi)) and using the functoriality
of φ under extensions of the base field, we reduce further to the case when y
is a rational point. We now use induction on dimY and note that the case
dimY = 0 is trivial. If dimY ≥ 1, let f : Ỹ → Y be the blowup at the k-
rational point y, Z = f−1(y) and A the stalk of OỸ at the generic point of Z.
Then A is a discrete valuation ring with field of fractions K := k(Ỹ ) = k(Y )
and residue field F := k(Z). Then by (2.9c) and Proposition 2.7 there is a
commutative diagram

Z0(XK)0 sp−−−−→ Z0(XF )0�φ′
�φ′

Im(H1
ét(SpecA, TA) → H1

ét(K,TK))
Θ−→ H1

ét(F, TF )

(2.11)

Now choose a rational K-point z on the above Z. Then, since dimZ =
dimY − 1, we obtain from the induction assumption that (c) holds if we
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consider the pair (Z, z) instead of (Y, y). Further, by using the commutativity
of (2.11), we deduce from this that (c) also holds for the pair (Ỹ , ỹ), which in
turn implies that (c) holds for (Y, y) since K(Y ) = K(Ỹ ) and f(z) = y. This
finishes the proof. �

We shall in the sequel use the following functoriality properties of (2.1).
Let k ⊂ k1 be an extension of perfect fields with algebraic closures k ⊂ k1. Put
G = Gal(k/k), G1 = Gal(k1/k1), X1 = X ×k k1 and X1 = X ×k k1. We may
then consider (2.1) as a sequence of G1-modules through the homomorphism
G1 → G obtained by restricting the G1-action to k. This sequence is the upper
row in a commutative diagram of discrete G1-modules where the bottom row
is given by (2.1) applied to X1. Now suppose that X and X1 satisfy (2.3)
and (2.4). Then we obtain the following commutative diagram with exact
rows from the functoriality of (2.5) under extension of the base field:

Z0(X)0 → H1
ét(k, T ) → H1(G,M) → Z/deg Z0(X) → H2

ét(k, T )� � � � �
Z0(X1)

0 →H1
ét(k1, T1) →H1(G1,M1) → Z/deg Z0(X1) →H2

ét(k1, T1)

(2.12)

where T1 = T ×k k1 and M1 is the cokernel of the tame symbol map in (2.1)
for X1. Note that T1 can be identified with the Néron–Severi torus of X1

since the functorial map gives an isomorphism from Pic(X) to Pic(X1) by
Proposition 1.46.

From now on, let k be a number field and choose algebraic closures kv

of kv, and embeddings k ⊂ kv for each place v of k. Let Gv = Gal(kv/kv),
Xv = X×k kv, Xv = X×k kv, and let Mv be the cokernel of the tame symbol
map in (2.1) for Xv. Write X1(k,M) for the kernel of the diagonal map
from H1(G,M) to

∏
all v H

1(Gv,Mv).

2.13 Theorem Let k be a number field and X a smooth proper geometrically
connected k-variety such that (2.3) and (2.4) hold for X := X ×k k for any
algebraically closed field k containing k. Suppose that for each v ∈ Ωk we are
given a 0-cycle zv of degree one on Xv and that Manin’s reciprocity condition∑

all v invv(ρv(zv))(Av) = 0 holds for all A ∈ H̃2
ét(X,Gm).

Then X1(k,M) maps onto Z/deg(Z0(X)) under the map from H1(G,M)
in (2.5). In particular, if X1(k,M) = 0, then there is a 0-cycle of degree one
on X.

Proof Let k be an algebraic closure of k, and K an algebraic closure of the
function field k(X) of X := X ×k k. Then K is also an algebraic closure of
K := k(X) and we have a natural homomorphism from H := Gal(K/K) to
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G := Gal(k/k). Now consider (2.12) for k1 = K. Then Z/deg(Z0(X1)) = 0
since the generic point of X defines a K-rational point on X1 = XK .

By Proposition 1.26, since Manin’s reciprocity condition is satisfied, there
exists a universal torsor over X. In turn, this implies that (cf. (2.2.5) and
(2.2.8) in [CT/S2]) the map from H2

ét(k, T ) to H2
ét(k1, T1) is injective. We

thus obtain the following commutative diagram with exact rows from (2.12):

Z0(X)0 → H1
ét(k, T ) → H1(G,M) → Z/deg Z0(X) → 0� � � �

Z0(XK)0 → H1
ét(K,TK) → H1(H,MK) → 0

(2.14)

where MK is the cokernel of the tame symbol map (see (2.1)) for X ×k K.
The assertion that X1(k,M) maps onto Z/deg(Z0(X)) therefore reduces to
the assertion that H1(G,M) is generated by X1(k,M) and the image of
H1

ét(k, T ).
For each place v of k there is a commutative diagram with exact rows:

Z0(X)0 → H1
ét(k, T ) → H1(G,M) → Z/deg Z0(X) → 0� � � �

Z0(Xv)0 → H1
ét(kv, Tv) → H1(Gv,Mv) → 0

(2.15)

where the zero in the second row comes from the existence of a 0-cycle of
degree one on Xv. Let Kv := kv(Xv) be the function field of Xv, and Kv

an algebraic closure of the function field kv(Xv) of Xv containing K. Then
Kv is also an algebraic closure of Kv, and there are natural homomorphisms
from Hv = Gal(Kv/Kv) to Gv and H. Let MKv be the cokenel of the tame
symbol map (see (2.1)) for X ×k Kv. Then there are commutative diagrams
with exact rows

Z0(XK)0 → H1
ét(K,TK) → H1(H,MK) → 0� � �

Z0(XKv)0 → H1
ét(Kv, TKv) → H1(Hv,MKv) → 0

(2.16)

and

Z0(Xv)0 → H1
ét(kv, Tv) → H1(Gv,Mv) → 0� � �

Z0(XKv)0 → H1
ét(Kv, TKv) → H1(Hv,MKv) → 0

(2.17)

and (2.14–17) are parts of a three-dimensional commutative diagam that also
contains the commutative diagrams

H1
ét(k, T ) → H1

ét(kv, Tv)� �
H1

ét(K,TK) → H1
ét(Kv, TKv)

and

H1(G,M) → H1(Gv,Mv)� �
H1(H,MK) → H1(Hv,MKv).
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Now let µ be an element of H1(G,M), µK its image in H1(H,MK), µv its
image in H1(Gv,Mv) and µKv its image in H1(Hv,MKv). Lift µK to an
element η of H1

ét(K,TK) (cf. (2.14)) and µv to an element βv ∈ H1
ét(kv, Tv)

(cf. (2.15)), and consider the images ηv of η and βKv of βv in H1
ét(Kv, TKv).

Then ηv − βKv ∈ Ker
(
H1

ét(Kv, TKv) → H1
ét(Hv,MKv)

)
which by exactness

of the second row in (2.17) implies that ηv − βKv ∈ φ′(Z0(XKv)0). Thus by
(2.10b), ηv − βKv ∈ Im

(
H1

ét(Xv, Tv) → H1
ét(Kv, TKv)

)
, and hence so does ηv.

Choose for each place v an Xv-torsor Tv under Tv such that [Tv] ∈ H1
ét(Xv, Tv)

maps to ηv in H1
ét(Kv, TKv). Then since ηv −βKv ∈ φ′(Z0(XKv)0) we conclude

from (a) and (c) of Lemma 2.10 that ρv(zv)([Tv] − βKv) ∈ φ′(Z0(Xv)0). This
means that ρv(zv)([Tv]) and ρv(zv)(βKv) = βv have the same image µv in
H1(Gv,Mv).

From the assumption that the 0-cycles (zv)v∈Ωk
satisfy Manin’s reciprocity

condition for all A ∈ H̃2
ét(X,Gm), we deduce from Corollary 1.45 that there

exists α ∈ H1
ét(k, T ) with image ρv(zv)([Tv]) in H1

ét(kv, Tv) for each place
v ∈ Ωk. Therefore, α ∈ H1

ét(k, T ) maps to an element in H1(G,M) with the
same image as µ in H1(Gv,Mv) for each v ∈ Ωk. This completes the proof.

2.18 Theorem Let k be a number field and X a smooth proper geometrically
connected k-surface. Suppose that there exists a rational function t ∈ k(X)
on X such that k(X) is the function field of a Severi–Brauer curve over k(t).
Then

(a) X1(k,M) = 0,

(b) Suppose that for each v ∈ Ωk we are given a 0-cycle zv of degree one on
Xv such that Manin’s reciprocity condition

∑
all v invv(ρv(zv))(Av) = 0

holds for all A ∈ H2
ét(X,Gm). Then there exists a 0-cycle of degree one

on X.

Proof (a) H1(G,M) and X1(k,M) are k-birational invariants [Sa]. The
assumptions on X implies that it is k-birational to a relatively minimal conic
bundle surface over P1. It is therefore sufficient to prove that X1(k,M) = 0
for relatively minimal conic bundle surface over P1. But this is the main
result of [Sa].

(b) This is a consequence of (a) and the previous theorem.
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Abelian surfaces with odd bilevel structure

G.K. Sankaran

Abelian surfaces with weak bilevel structure were introduced by S. Mukai
in [14]. There is a coarse moduli space, denoted Abil

t , for abelian surfaces of
type (1, t) with weak bilevel structure. Abil

t is a Siegel modular threefold, and
can be compactified in a standard way by Mumford’s toroidal method [1].
We denote the toroidal compactification (in this situation also known as the
Igusa compactification) by Abil∗

t . It is a projective variety over C, and it
is shown in [14] that Abil∗

t is rational for t ≤ 5. In this paper we examine
the Kodaira dimension κ(Abil∗

t ) for larger t. Our main result is the following
(Theorem VIII.1).

Theorem Abil∗
t is of general type for t odd and t ≥ 17.

It follows from the theorem of L. Borisov [2] that Abil∗
t is of general type

for t sufficiently large. If t = p is prime, then it follows from [7] and [12] that
Abil∗

p is of general type for p ≥ 37. Our result provides an effective bound in
the general case and a better bound in the case t = p. As far as we know,
all previous explicit general type results (for instance [7, 12, 15, 8, 16]) have
been for the cases t = p or t = p2 only.

It is for brevity that we assume t is odd. If t is even the combinatorial
details are more complicated, especially when t ≡ 2 mod 4, but the method
is still applicable. In fact the method is essentially that of [12], with some
modifications.

Acknowledgement Part of this work resulted from conversations with my
research student Alfio Marini.

I Background

If A is an abelian surface with a polarisation H of type (1, t), t > 1, then
a canonical level structure, or simply level structure, is a symplectic iso-
morphism

α : Z2
t

�−→ K(H) =
{
x ∈ A

∣∣ t∗xL ∼= L if c1(L) = H
}
.

279
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The moduli space Alev
t of abelian surfaces with a canonical level structure has

been studied in detail in [11], chiefly in the case t = p.
A colevel structure on A is a level structure on the dual abelian surface Â:

note that H induces a polarisation Ĥ on Â, also of type (1, t). Alternatively,
a colevel structure may be thought of as a symplectic isomorphism

β : Z2
t → A[t]/K(H)

where A[t] is the group of all t-torsion points of A. Obviously the moduli space
Acol

t of abelian surfaces of type (1, t) with a colevel structure is isomorphic
to Alev

t , and each of them has a forgetful morphism ψlev, ψcol to the moduli
space At of abelian surfaces of type (1, t). We define

Abil
t = Alev

t ×At Acol
t .

The forgetful map ψlev : Alev
t → At is the quotient map under the action of

SL(2,Zt) given by

γ : [(A,H, α)] �→ [(A,H, αγ)]

where γ ∈ SL(2,Zt) is viewed as a symplectic automorphism of Z2
t . The

action is not effective, because (A,H, α) is isomorphic to (A,H,−α) via the
isomorphism x �→ −x; so −12 ∈ SL(2,Zt) acts trivially. Thus ψ

lev is a Galois
morphism with Galois group PSL(2,Zt) = SL(2,Zt)/± 12.

A point of Abil
t thus corresponds to an equivalence class [(A,H, α, β)],

where (A,H) is a polarised abelian surface of type (1, t), α and β are level
and colevel structures, and (A,H, α, β) is equivalent to (A′, H ′, α′, β′) if there
is an isomorphism ρ : A → A′ such that ρ∗H ′ = H, ρα = α′ and ρ̂−1β =
β′. In particular, for general A, we have (A,H, α, β) ∼= (A,H,−α,−β) but
(A,H, α, β) 
∼= (A,H,−α, β). Another way to express this is to say that the
wreath product Z2 � PSL(2,Zt), acts on Abil

t with quotient At.

Theorem I.1 (Mukai [14]) Abil
t is the quotient of the Siegel upper half-plane

H2 by the group

Γbil
t = Γ�

t ∪ ζΓ�
t

where

Γ�
t =


γ ∈ Sp(4,Z)

∣∣∣∣∣∣∣∣
γ − 14 ∈



tZ ∗ tZ tZ
tZ tZ tZ t2Z
tZ ∗ tZ tZ
∗ ∗ ∗ tZ






and ζ = diag(1,−1, 1,−1), acting by fractional linear transformations.



G.K. Sankaran 281

Thus Γbil
t should be thought of as a subgroup of the paramodular group

Γt =


γ ∈ Sp(4,Q)

∣∣∣∣∣∣∣∣
γ − 14 ∈




∗ ∗ ∗ tZ
tZ ∗ tZ tZ
∗ ∗ ∗ tZ
∗ 1

t
Z ∗ ∗




 .

(The paramodular group is the group denoted Γ◦
1,t in [11] and [5].)

For some purposes it is more convenient to work with the conjugate
Γ̃bil

t = RtΓ
bil
t Rt−1 of Γbil

t by Rt = diag(1, 1, 1, t), and with the correspond-

ing conjugates Γ̃�
t, Γ̃

lev
t etcetera. These groups have the advantage that they

are subgroups of Sp(4,Z) rather than Sp(4,Q), and defined by congruences
mod t, not mod t2, but their action on H2 is not the usual one by fractional
linear transformations.

If Ei are elliptic curves and (A,H) =
(
E1 × E2, c1

(OE1(1)�OE2(t)
))
, we

say that (A,H) is a product surface. In this case K(H) = {0E1} × E2[t], so
a level structure on A may be thought of as a full level t structure on E2.
The automorphism (x,y) �→ (x,−y) of A = E1×E2 induces an isomorphism
(A,H, α, β) → (A,H,−α, β) in this case, so a product surface with a weak
bilevel structure still has an extra automorphism. The corresponding locus
in the moduli space arises from the fixed locus of ζ in H2, and will be of great
importance in this paper.

The geometry of Abil∗
t shows many similarities with that of Alev∗

t , which
was studied (in the case of t an odd prime) in the book [11]. In many cases
where the proofs of intermediate results are very similar to those of corre-
sponding results in [11] we omit the details and simply indicate the appropri-
ate reference.

II Modular groups and modular forms

We first collect some facts about congruence subgroups in SL(2,Z) and some
related combinatorial information. For r ∈ N we denote by Γ1(r) the principal
congruence subgroup of SL(2,Z). We denote the modular curve Γ1(r)\H by
X◦(r), and the compactification obtained by adding the cusps by X(r).

For m, r ∈ N, define

Φm(r) =
{
a ∈ Zm

r

∣∣ a is not a multiple of a zerodivisor in Zr

}
,

that is, a ∈ Φm(r) if and only if a = za′ implies z ∈ Z∗
r; and put φm(r) =

#Φm(r). We also put Φm(r) = Φm(r)/±1.
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Lemma II.1 If the primes dividing r are p1 < p2 < · · · < pn then

φm(r) =
n∑

i=0

(−1)i
∑

pj1
,...,pji

(
r

i∏
k=1

p−1
jk

)m

= rm
∏
p|r
(1− p−m).

Proof We first prove that φm(r) is a multiplicative function. Suppose first
that r = pq, with gcd(p, q) = 1. It is easy to see that a ∈ Φm(r) if and only
if ap ∈ Φm(p) and aq ∈ Φm(q), where ap denotes the reduction of a mod p.

We divide Zm
r into residue classes mod p: that is, we write Zm

r as the
disjoint union of subsets Sc for c ∈ Zm

p , where Sc = {a ∣∣ ap = c}. There are
φm(p) subsets Sc such that r ∈ Φm(p).

The reduction mod q map Sc → Zm
q is bijective, since it is the inverse of

the injective map b �→ c + pb ∈ Zm
r . Hence in each of the φm(p) subsets

Sc, c ∈ Φm(p) there are φm(q) elements whose reduction mod q belongs to
Φm(q). It follows that φm(r) = φm(p)φm(q).

Finally, we check that if r = pk, p prime, then φm(r) = rm(1 − p−m). If
a 
∈ Φm(r), then a = pa′ for a unique a′ ∈ Zm

r/p, so there are (pk−1)m such
elements a. �

Note that φ1 is the Euler φ function, and Φ1(r) the set of non-zerodivisors
of Zr.

Corollary II.2 The order of SL(2,Zt) is given by

| SL(2,Zt)| = tφ2(t) = t3
∏
p|t
(1− p−2).

Proof (See also [18, §1.6].) If A ∈ SL(2,Zt), then A1 = (a11, a12) ∈ Φ2(t).

So by Euclid’s algorithm we can find A′
2 = (a′21, a

′
22) such that det

(
A1

A′
2

)
=

gcd(a11, a12) = r. Replacing A′
2 by A2 = r−1A′

2, we get a matrix A with
detA = 1. Furthermore, if Bj =

(
A1

A2+jA1

)
, j = 0, . . . , t − 1, then detBj =

detA = 1, and Bj 
= Bj′ if j 
= j′. So | SL(2,Zt)| = tφ2(t). �
For r > 2, put µ(r) = [PSL(2,Z) : Γ1(r)]. By Corollary II.2 we have

µ(r) = r3
∏
p|r
(1− p−2).

We need the following well-known lemma.

Lemma II.3 If r > 2 then X(r) has

ν(r) = µ(r)/r = r2
∏
p|r
(1− p−2)

cusps and is a smooth complete curve of genus g = 1 + µ(r)
12

− ν(r)
2

.
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Proof See [18, pp. 23–24]. �
We denote µ(t) by µ and ν(t) by ν. Note that φ2(1) = ν(1) = 1 and

φ2(r) = 2ν(r) for r > 2.
Now we turn to subgroups of Sp(4,Q) and modular forms. Denote by

S∗
n(Γ) the space of weight n cusp forms for Γ ⊆ Sp(4,Q). We need the

groups Γ(1) = PSp(4,Z) and, for # ∈ N,

Γ(#) =
{
γ ∈ Sp(4,Z)

∣∣ γ = 14 ∈ Sp(4,Z�)
}
.

If t2 | # then Γ(#) � Γbil
t , because Γ(#) ⊆ Γbil

t and Γ(#) is normal in Γ(1) =
Sp(4,Z).

By a previous calculation [19] we know that

dimS∗
n

(
Γ(#)
)
=

n3

8640

[
Γ(1) : Γ(#)

]
+O(n2)

(as long as # > 2 we can consider Γ(#) as a subgroup of PSp(4,Z) rather than
Sp(4,Z)). A standard application of the Atiyah–Bott fixed-point theorem
(see [9], or in this context [12]) gives

dimS∗
n

(
Γbil

t

)
=

a[
Γbil

t : Γ(#)
] dimS∗

n

(
Γ(#)
)
+O(n2)

where a is the number of elements γ ∈ Γbil
t whose fixed locus in H2 has

dimension 3. Thus a is the number of elements of Γbil
t that act trivially on H2.

In Sp(4,Z) there are two such elements, ±14, but if t > 2 then −14 
∈ Γbil
t .

So a = 1, and hence

dimS∗
n

(
Γbil

t

)
=

1[
Γbil

t : Γ(#)
] dimS∗

n

(
Γ(#)
)
+O(n2)

=
n3

8640

[
Γ(1) : Γ(#)

][
Γbil

t : Γ(#)
] +O(n2)

=
n3

8640

[
Γ(1) : Γbil

t

]
+O(n2). (1)

The number
[
Γ(1) : Γbil

t

]
is equal to the degree of the mapAbil

t → A1 (actually
there are two such maps of the same degree), where A1 is the moduli space
of principally polarized abelian surfaces. Now

[
Γ(1) : Γbil

t

]
=

1

2

[
Γ(1) : Γ�

t

]
=

1

2

[
Γ(1) : Γlev

t

] [
Γlev

t : Γ�
t

]
.
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We can see directly that Γlev
t ⊃ Γ�

t since

Γlev
t =


γ ∈ Sp(4,Z)

∣∣∣∣∣∣∣∣
γ − 14 ∈




∗ ∗ ∗ tZ
tZ tZ tZ t2Z
∗ ∗ ∗ tZ
∗ ∗ ∗ tZ




 .

Lemma II.4 The map

ϕ : Γlev
t → SL(2,Zt) given by A �→

(
a11 a13

a31 a33

)

is a surjective group homomorphism, and the kernel is Γ�
t.

Proof The surjectivity follows from the well-known fact that the reduction
mod t map redt : SL(2,Z) → SL(2,Zt) is surjective; the rest is obvious. �

Lemma II.5 For t > 2, the index [Γ(1) : Γlev
t ] is equal to tφ4(t)/2.

Proof The proof is almost the same as that of [13, Lemma 0.5]. In place
of the chain of groups Γ1,p < 0Γ1,p < Γ′ = Γ(1), we use the chain Γlev

t <

0Γ1,t < Γ(1). Furthermore, we use the set Φ4(t) where SL(4,Zt) acts. Note
that SL(4,Z) still acts transitively on Φ4(t), via


b11 0 b12 0
0 1 0 0
b21 0 b22 0
0 0 0 1


 and

(
B 0
0 tB−1

)
,

for B ∈ SL(2,Z).
Following the same steps as in [13], and substituting φm(t) for p

m − 1 =
φm(p), we then find that [0Γ1,t : Γ

lev
t ] = tφ1(t) and [0Γ1,t : Γ(1)| = φ4(t)/φ1(t),

so [Γ(1) : Γlev
t ] = tφ4(t)/2. �

Theorem II.6 The number of cusp forms of weight n for Γbil
t (for t > 2) is

given by

dimS∗
n(Γ

bil
t ) =

n3

34560
t2φ2(t)φ4(t)

=
n3

34560
t8
∏
p|t
(1− p−2)(1− p−4).
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Proof Immediate from equation (1), Corollary II.2 and Lemma II.5. �

III Torsion in the modular group

We know that Γbil
t ⊂ Sp(4,Z), and the conjugacy classes of torsion elements

in Sp(4,Z) are known ([6, 20]). See [10] for a summary of the relevant infor-
mation.

If γ ∈ Γ�
t then the reduction mod t of γ is

γ =



1 ∗ 0 0
0 1 0 0
0 ∗ 1 0
∗ ∗ ∗ 1


 ∈ Sp(4,Zt),

so the characteristic polynomial χ(γ) is (1− x)4 ∈ Zt[x]. On the other hand,
if γ ∈ ζΓ�

t then

γ = ζ



1 ∗ 0 0
0 1 0 0
0 ∗ 1 0
∗ ∗ ∗ 1


 =



1 ∗ 0 0
0 −1 0 0
0 ∗ 1 0
∗ ∗ ∗ −1


 ∈ Sp(4,Zt),

so χ(γ) = (1− x)2(1 + x)2 ∈ Zt[x].
The only classes in the list in [20], up to conjugacy, where the characteristic

polynomials have this reduction mod t (t > 2) are I(1), where χ(γ) = (1−x)4,
II(1)a and II(1)b. Class I(1) consists of the identity; class II(1)a includes ζ
so this just gives us the conjugacy class of ζ. Class II(2)b is the Sp(4,Z)-
conjugacy class of ξ, where

ξ =



1 1 0 0
0 −1 0 0
0 0 1 0
0 0 1 −1


 ∈ Γbil

t .

Proposition III.1 Every nontrivial element of finite order in Γbil
t (for t > 2)

has order 2, and is conjugate to ζ or to ξ in Γbil
t if t is odd.

Proof It follows from the list in [20] that the only torsion for t > 2 is 2-
torsion (this is still true if t is even). The 2-torsion of the group Γlev

t was
studied by Brasch [3]. There are five types but only two of them occur for
odd t. The representatives for these conjugacy classes given in [3] are (up
to sign) ζ and ξ; so the assertion of the theorem is that the Γbil

t -conjugacy
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classes of ζ and ξ coincide with the intersections of their Γlev
t -conjugacy classes

with Γbil
t . This is checked in [17, Proposition 3.2] for the case t = 6 (the

relevant cases are called ζ0 and ζ3 there), but the proof works for all t > 2. �
We put

H1 =

{(
τ1 0
0 τ3

) ∣∣∣∣ Im τ1 > 0, Im τ3 > 0

}
⊂ H2 (2)

and

H2 =

{(
τ1 τ2

τ2 τ3

) ∣∣∣∣ 2τ2 + τ3 = 0

}
⊂ H2. (3)

These are the fixed loci of ζ and ξ respectively. We denote by H◦
1 and H◦

2

the images of H1 and H2 in Abil
t , and by H1 and H2 their respective closures

in Abil∗
t .

Lemma III.2 H◦
i is irreducible for i = 1, 2.

Proof This follows at once from Proposition III.1 together with equations
(2) and (3). �

The abelian surfaces corresponding to points in H◦
1 and H◦

2 are, respec-
tively, product surfaces and bielliptic abelian surfaces, as described in [13] for
the case t prime.

We define the subgroup Γ(2t, 2t) of Γ(t)× Γ(t) by

Γ(2t, 2t) =
{
(M,N) ∈ Γ(t)× Γ(t)

∣∣M ≡ �N−1 mod 2
}

Lemma III.3 H◦
1 is isomorphic to X◦(t)×X◦(t), and H◦

2 is isomorphic to
Γ(2t, 2t)\H × H.

Proof Identical to the proofs of the corresponding results [11, Lemma I.5.43]
and [11, Lemma I.5.45]. The level t structure now occurs in both factors,
whereas in [11] there is level 1 structure in the first factor and level p structure
in the second. In [11] the level p is assumed to be an odd prime but this fact
is not used at that stage: p odd suffices, so we may replace p by t. Thereafter
one simply replaces all the groups with their intersection with Γbil

t , which
imposes a level t structure in the first factor and causes it to behave exactly
like the second factor. �

Lemma III.4 H◦
1 and H◦

2 are disjoint.
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Proof The stabiliser of any point of H2 in Γbil
t is cyclic (of order 2), since

Γ�
t is torsion-free and therefore has no fixed points. A point of H1∩H2 would

be the image of a point of H2 stabilised by the subgroup generated by ζ and
ξ, which is not cyclic. �

IV Boundary divisors

We begin by counting the boundary divisors. These correspond to Γ̃bil
t -orbits

of lines in Q 4: we identify a line by its primitive generator v = (v1, v2, v3, v4) ∈
Z4 with hcf(v1, v2, v3, v4) = 1, which is unique up to sign. We denote the
reduction of v mod t by v = (v1, v2, v3, v4) ∈ Z4

t . To fix things we shall
say, arbitrarily, that v is positive if the first nonzero entry vi of v satisfies
vi ∈ {1, . . . , (t−1)/2} (remember that we have assumed that t is odd). Then
each line has a unique positive primitive generator.

If v = (v1, v2, v3, v4) ∈ Z4, we define the t-divisor to be r = hcf(t, v1, v3).

Proposition IV.1 Positive primitive vectors v,w ∈ Z4 span lines Qv and
Qw in the same Γ̃bil

t -orbit if and only if (v1, v3) = (w1, w3) (in particular v
and w have the same t-divisor, r), and (v2, v4) ≡ ±(w2, w4) mod r.

Proof Note that if Γ(t) is the principal congruence subgroup of level t in

Sp(4,Z) then Γ(t) � Γ̃�
t and the quotient is

Γ̃�
t(t) =






1 k 0 k′

0 1 0 0
0 l 1 l′

0 0 0 1


 ∈ Sp(4,Zt)


 ∼= Z4

t .

We claim that two primitive vectors v and w are equivalent modulo Γ(t) if
and only if v = w. It is obvious that Γ(t) preserves the residue classes mod t.
Conversely, suppose that v = w. Then we can find γ ∈ Sp(4,Z) such that
γv = (1, 0, 0, 0) (the corresponding geometric fact is that the moduli space
A2 of principally polarised abelian surfaces has only one rank 1 cusp). Since
Γ(t) � Sp(4,Z) this means that in order to prove the claim we may assume
v = (1, 0, 0, 0). Then we proceed exactly as in the proof of [5, Lemma 3.3],
taking p = 1 and q = t (the assumptions that p and q are prime are not used
at that point).

The group Γ̃�
t(t) acts on the set (Z4

t )
× of nonzero elements of Z4

t by v2 �→
v2 + kv1 + lv3 and v4 �→ v4 + k′v1 + l′v3: so v is equivalent to w if and only
if (v1, v3) = (w1, w3), so they have the same t-divisor, and v2 ∈ w2 +Ztr and
v4 ∈ w4 +Ztr. These are therefore the conditions for primitive vectors v and
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w to be equivalent under Γ̃�
t. For equivalence under Γ̃bil

t , we get the extra
element ζ which makes (v1, v2, v3, v4) equivalent to (v1,−v2, v3,−v4). Since
we are interested in orbits of lines, not primitive generators, we may restrict
ourselves to positive generators v. �

The irreducible components of the boundary divisor of Abil∗
t correspond

to the Γbil
t -orbits (or equivalently to Γ̃bil

t -orbits) of lines in Q 4. We denote
the boundary component corresponding to Qv by Dv. We shall be chiefly
interested in the cases r = t and r = 1. We refer to these as the standard
components. They are represented by vectors (0, a, 0, b) and (a, 0, b, 0) respec-
tively, in either case with hcf(a, b) = 1, 0 ≤ a ≤ (t − 1)/2 and 0 ≤ b < t.
Note that there are ν of each of these.

Corollary IV.2 If t is odd then the number of irreducible boundary divisors
of Abil∗

t with t-divisor r is #Φ2(h)#Φ2(r), where h = t/r. For r 
= 1, t, this
is equal to 1

4
φ2(h)φ2(r).

Proof See above for the standard cases. In general, the Γ�
t-orbit of a prim-

itive vector v is determined by the classes of (v1/r, v3/r) in Φ2(h) and of
(v2, v4) ∈ Φ2(r). The extra element ζ and the freedom to multiply v by
−1 ∈ Q allow us to multiply either of these classes by −1 and the choices
therefore lie in Φ2(h) and Φ2(r). �

V Jacobi forms

This section describes the behaviour of a modular form F ∈ S∗
3n(Γ

bil
t ) near

a boundary divisor Dv. The standard boundary divisors are best treated
separately, since it is in those cases only that the torsion plays a role: on the
other hand, the standard boundary divisors occur for all t and their behaviour
does not depend very much on the factorisation of t.

We assume at first, then, that Dv is a nonstandard boundary divisor.
Since all the divisors of given t-divisor are equivalent under the action of
Z2 �SL(2,Zt) (because the t-divisor is the only invariant of a boundary divisor
ofAt: see [5]), it will be enough to calculate the number of conditions imposed
by one divisor of each type. That is to say, we only need consider boundary
components in A∗

t .
In view of this we may take v = (0, 0, r, 1) for some r | t with 1 < r < t.

We write (0, 0, 0, 1) = v(0,1) (for consistency with [11]) and we put h = t/r.

Since we want to work with Γbil
t rather than Γ̃bil

t (so as to use fractional
linear transformations) we must consider the lines QvRt = Qv′, where v′ =
(0, 0, 1, h) and Qv(0,1)Rt = Qv(0,1).
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Note that v′Qr = v(0,1), where

Qr =




1 1 0 0
h− 1 h 0 0
0 0 h 1− h
0 0 −1 1


 ∈ Sp(4,Z).

Proposition V.1 If v has t-divisor r 
= t, 1 and F ∈ S∗
k(Γ

bil
t ) is a cusp

form of weight k, then there are coordinates τv
i such that F has a Fourier

expansion near Dv as

F =
∑
w≥0

θv
w(τ

v
1 , τ

v
2 ) exp

2πiwτv
3

rt
.

Proof As usual (cf. [11]) we write P ′
v for the stabiliser of v′ in Sp(4,R),

so P ′
v = Q−1

r Pv(0,1)
Qr. We take P ′

v = P ′
v ∩ Γbil

t : this group determines the

structure of Abil∗
t near Dv. It is shown in [11, Proposition I.3.87] that Pv(0,1)

is generated by g1(γ) for γ ∈ SL(2,R), g2 = ζ, g3(m,n) and g4(s) for m, n,
s ∈ R, where

g1(γ) =



a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


 for γ =

(
a b
c d

)

and g3 and g4 are given by

g3(m,n) =



1 0 0 n
m 1 n 0
0 1 0 −m
0 0 0 1


 , g4(s) =



1 0 0 0
0 1 0 s
0 0 1 0
0 0 0 1


 .

So P ′
v includes the subgroup generated by all elements of the form Q−1

r giQr

with a, b, c, d,m, n, s ∈ Z which lie in Γbil
t . In particular it includes the lattice

{Q−1
r g4(rts)Qr | s ∈ Z}. If we take Zv = Q−1

r (Z) for Z = ( τ1 τ2
τ2 τ3 ) then we

obtain

Zv =

(
h2τ1 − 2hτ2 + τ3 −h(h− 1)τ1 + (2h− 1)τ2 − τ3

−h(h− 1)τ1 + (2h− 1)τ2 − τ3 (h− 1)2τ1 − 2(h− 1)τ2 + τ3

)
.

One easily checks that

Q−1
r g4(rt)Qr : Z

v =

(
τv
1 τv

2

τv
2 τv

3

)
�→
(
τv
1 τv

2

τv
2 τv

3 + rt

)
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and this proves the result. �
We define a subgroup Γ(t, r) of SL(2,Z) by

Γ(t, r) =

{(
a b
c d

)∣∣∣∣ a ≡ d ≡ 1 mod t, b ≡ 0 mod t2, c ≡ 0 mod r

}
.

Lemma V.2 If Dv is nonstandard then P ′
v is torsion-free.

Proof The only torsion in Γbil
t is 2-torsion and a simple calculation shows

that if 14 
= g ∈ Pv(0,1)
and g2 = 14, then Q−1

r gQr 
∈ Γbil
t for r 
= 1, t. �

Proposition V.3 If Dv is nonstandard and F ∈ S∗
k(Γ

bil
t ) then θv

w(rτ
v
1 , tτ

v
2 )

is a Jacobi form of weight k and index w for Γ(t, r).

Proof By direct calculation we find that Q−1
r g1(γ)Qr ∈ Γbil

t if γ ∈ Γ(t, r)
and Q−1

r g3(rm, tn)Qr ∈ Γbil
t for m, n ∈ Z. Using these two elements, another

elementary calculation verifies that the transformation laws for Jacobi forms
given in [4] are satisfied, since

Q−1
r g3(rm, tn)Qr : Z

v �→
(

τv
1 τv

2 + rmτv
1 + tn

τv
2 + rmτv

1 + tn τv
3 + 2rmτv

2 + r2m2τv
1

)

and Q−1
r g1(γ)Qr : Z

v �→
(

γ(τv
1 ) τv

2 /(cτ
v
1 + d)

τv
2 /(cτ

v
1 + d) τv

3 − cτv
2 /(cτ

v
1 + d)

)
. �

Lemma V.4 The index of Γ(t, r) in Γ(1) is equal to rtφ2(t) for r 
= 1, t.

Proof Consider the chain of groups

Γ(1) = SL(2,Z) > Γ0(t) > Γ0(t)(r) > Γ(t, r)

and the normal subgroup Γ1(t) � Γ0(t), where

Γ0(t) =

{
γ =

(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ a ≡ d ≡ 1 mod t,
b ≡ 0 mod t

}
,

Γ1(t) =

{
γ =

(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ a ≡ d ≡ 1 mod t,
b ≡ c ≡ 0 mod t

}
,

Γ0(t)(h) =

{
γ =

(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ a ≡ d ≡ 1 mod t,
b ≡ 0 mod t, c ≡ 0 mod h

}
.
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Thus Γ0(t)(r) is the kernel of reduction mod r in Γ0(t). By Corollary II.2,
[Γ(1) : Γ1(t)] = tφ2(t). By the exact sequence

0 −→ Γ1(t) −→ Γ0(t) −→
{(

1 0
c̄ 1

) ∣∣∣∣ c̄ ∈ Zt

}
∼= Zt −→ 0

we have [Γ0(t) : Γ1(t)] = t, and similarly

0 −→ Γ0(t)(r) −→ Γ0(t) −→
{(

1 0
c̄ 1

) ∣∣∣∣ c̄ ∈ Zr

}
∼= Zr −→ 0

gives [Γ0(t) : Γ0(t)(r)] = r.

To calculate [Γ(t)(r) : Γ(t, r)], we let Γ0(t)(r) act on Zt×Zt2 by right multi-
plication γ : (x, y) �→ (ax+ cy, bx+ dy). The stabiliser of (1, 0) ∈ Zt × Zt2 is
then {γ ∈ Γ0(t)(r) | a ≡ 1 mod t, b ≡ 0 mod t2}, which is Γ(t, r). However,
the orbit of (1, 0) ∈ Zt × Zt2 is

{
(ā, b̄) ∈ Zt × Zt2

∣∣ ( a b
c d ) ∈ Γ0(t)(r)

}
: that is,

the set of possible first rows of a matrix in Γ0(t)(r) taken mod t in the first
column and mod t2 in the second. This is evidently equal to {(1, tb′) | b′ ∈ Zt},
and hence of size t. Thus [Γ(t)(r) : Γ(t, r)] = t, which completes the proof. �

The standard case is only slightly different, but now there is torsion.

Proposition V.5 If Dv is standard and F ∈ S∗
k(Γ

bil
t ) then θv

w(rτ
v
1 , tτ

v
2 ) is

a Jacobi form of weight k and index w for a group Γ′(t, r), which contains
Γ(t, r) as a subgroup of index 2.

Proof Although the standard boundary components are most obviously
given by (0, 0, 0, 1) for r = t and (0, 0, 1, 0) for r = 1, we choose to take
advantage of the calculations that we have already performed by working
instead with (0, 0, t, 1) and (0, 0, 1, 1). Lemma V.3 is still true, but we also
have Q−1

t ζQt ∈ Γbil
t and Q−1

1 (−ζ)Q1 ∈ Γbil
t . These give rise to the stated

extra invariance. �

Lemma V.6 The dimension of the space J3k,w

(
Γ′(t, r)

)
of Jacobi forms of

weight 3k and index w for Γ′(t, r) is given as a polynomial in k and w by

dim J3k,w

(
Γ′(t, r)

)
= δrtν

(
kw

2
+

w2

6

)
+ linear terms

where δ = 1
2
if r = 1 or r = t and δ = 1 otherwise.
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Proof By [4, Theorem 3.4] we have

dim J3k,w

(
Γ′(t, r)

) ≤ 2w∑
i=0

dimS3k+i

(
Γ′(t, r)

)
. (4)

Since Γ′(t, r) is torsion-free, the corresponding modular curve has genus 1 +
µ(t,r)

12
− ν(t,r)

2
, where µ(t, r) is the index of Γ′(t, r) in PSL(2,Z) and ν(t, r) is

the number of cusps (see [18, Proposition 1.40]). Hence by [18, Theorem 2.23]
the space of modular forms satisfies

dimSk

(
Γ′(t, r)

)
= k

(
µ(t, r)

12
− ν(t, r)

2

)
+

k

2
ν(t, r) +O(1)

=
kµ(t, r)

12
+O(1) (5)

as a polynomial in k. By Lemma V.4 we have µ(t, r) = 1
2
rtφ2(t) = rtν for the

nonstandard cases, µ(t, 1) = 1
2
tν and µ(t, t) = 1

2
t2ν. Now the result follows

from equations (5) and (4). �
If F ∈ S∗

3k(Γ
bil
t ) then F · (dτ1 ∧ dτ2 ∧ dτ3)

⊗k extends over the component
Dv if and only if θv

w = 0 for all w < k: see [1, Chapter IV, Theorem 1]. Hence
the obstruction Ωv coming from the boundary component Dv is

Ωv =
k−1∑
w=0

dim J3k,w (Γ
′(t, r)) (6)

where Γ′(t, r) = Γ(t, r) if Dv is nonstandard.
By Corollary IV.2 the total obstruction from the boundary is

Ω∞ =
∑
r|t

#Φ(h)#Φ(r)
k−1∑
w=0

dim J3k,w

(
Γ′(t, r)

)
,

and we may assume that k is even.

Corollary V.7 The obstruction coming from the boundary is

Ω∞ ≤
(∑

r|t
δrtν#Φ(h)#Φ(r)

)
11

36
k3 +O(k2).

Proof Summing the expression in Lemma V.6 for 0 ≤ w < k, as required
by equation (6) gives the coefficient of 11

36
and the rest comes directly from

Lemma V.6 and Corollary IV.2. �
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VI Intersection numbers

We need to know the degrees of the normal bundles of the curves that generate
PicH1 and PicH2. For this we first need to describe the surfaces H1 and H2.
The statements and the proofs are very similar to the corresponding results
for the case of Alev

p , given in [11] and [12]. Therefore we simply refer to those
sources for proofs, pointing out such differences as there are.

Proposition VI.1 H1 is isomorphic to X(t)×X(t).

Proof Identical to [11, I.5.53]. �

Proposition VI.2 H2 is the minimal resolution of a surface H2 which is
given by two SL(2,Z2)-covering maps

X(2t)×X(2t) −→ H2 −→ X(t)×X(t).

The singularities that are resolved are ν2 ordinary double points, one over
each point (α, β) ∈ X(t)×X(t) for which α and β are cusps.

Proof Similar to [11, Proposition I.5.55] and the discussion before [12,
Proposition 4.21]. X(2) and X(2p) are both replaced by X(2t) and X(1)
and X(p) by X(t). Since t > 3 there are no elliptic fixed points and hence no
other singularities in this case. �

Proposition VI.3 H◦
1 and H◦

2 meet the standard boundary components Dv

transversally in irreducible curves Cv
∼= X◦(t) and C ′

v
∼= X◦(2t) respectively.

Dv is isomorphic to the (open) Kummer modular surface K◦(t), Cv is the zero
section and C ′

v is the 3-section given by the 2-torsion points of the universal
elliptic curve over X(t).

Proof This is essentially the same as [11, Proposition I.5.49], slightly sim-
pler in fact. We may work with v = (0, 0, 1, 0) and copy the proof for the
central boundary component in Alev

p , replacing p by t (again the fact that p
is prime is not used). �

We do not claim that the closure of Dv is the Kummer modular surface
K(t). They are, however, isomorphic nearH1 andH2. We remark thatH1 and
H2 do not meet the nonstandard boundary divisors, because of Lemma V.2.

Proposition VI.4 Abil∗
t is smooth near H1 and H2.
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Proof Certainly Abil
t is smooth since the only torsion in Γbil

t is 2-torsion
fixing a divisor in H2. There can in principle be singularities at infinity, but
such singularities must lie on corank 2 boundary components not meeting H1

nor H2 (this follows again from Lemma V.2). �

Corollary VI.5 H1 does not meet H2.

Proof Since Abil∗
t and the divisors H1 and H2 are smooth at the relevant

points, the intersection must either be empty or contain a curve. However,
the intersection also lies in the corank 2 boundary components. These com-
ponents consist entirely of rational curves, and if t > 5 then H1

∼= X(t)×X(t)
contains no rational curves. Hence H1 ∩H2 = ∅.

With a little more work one can check that this is still true for t ≤ 5, but
we are in any case not concerned with that. �

Proposition VI.6 The Picard group PicH1 is generated by the classes of
Σ1 = C0010 and Ψ1 = C0001. The intersection numbers are Σ2

1 = Ψ2
1 = 0,

Σ1 ·Ψ1 = 1 and Σ1 ·H1 = Ψ1 ·H1 = −µ/6.

Proof As in [12, Proposition 4.18] (but one has to use the alternative indi-
cated in the remark that follows). �

Proposition VI.7 The Picard group PicH2 is generated by the classes of Σ2

and Ψ2, which are the inverse images of general fibres of the two projections
in X(t)×X(t), and of the exceptional curves Rαβ of the resolution H2 → H2.
The intersection numbers in H2 are Σ2

2 = Ψ2
2 = Σ2 · Rαβ = Ψ2 · Rαβ = 0,

Rαβ ·Rα′β′ = −2δαα′δββ′ and Σ2 ·Ψ2 = 6. In Abil∗
t we have Σ2 ·H2 = Ψ2 ·H2 =

−µ and Rαβ ·H2 = −4.

Proof The same as the proofs of [12, Proposition 4.21] and [12, Lemma
4.24]. The curves R′

(a,b) from [12] arise from elliptic fixed points so they are
absent here. �

Notice that Σ2 and Ψ2 are also images of the general fibres inX(2t)×X(2t)
and are themselves isomorphic to X(2t).

VII Branch locus

The closure of the branch locus of the map H2 → Abil
t is H1∪H2 and modular

forms of weight 3k (for k even) give rise to k-fold differential forms with poles
of order k/2 along H1 and H2. We have to calculate the number of conditions
imposed by these poles.
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Proposition VII.1 The obstruction from H1 to extending modular forms of
weight 3k to k-fold holomorphic differential forms is

Ω1 ≤ ν2
(1
2
− 7t

24
+ t2
( 1
24

+
1

864

))
k3 +O(k2).

Proof If F is a modular form of weight 3k for k even, vanishing to suffi-
ciently high order at infinity, and ω = dτ1 ∧ dτ2 ∧ dτ3, then Fω⊗k determines
a section of kK + k

2
H1 +

k
2
H2, where K denotes the canonical sheaf of Abil∗

t .
From

0 −→ O(−H1) −→ O −→ OH1 −→ 0

we get, for 0 ≤ j < k/2

0 −→ H0
(
kK + (

k

2
− j − 1)H1 +

k

2
H2

) −→ H0
(
kK + (

k

2
− j)H1 +

k

2
H2

)
−→ H0

((
kK + (

k

2
− j)H1 +

k

2
H2

)|H1

)
.

Thus

h0
(
kK + (

k

2
− j)H1 +

k

2
H2

) ≤ h0
(
kK + (

k

2
− j − 1)H1 +

k

2
H2

)
+ h0
((
kK + (

k

2
− j)H1 +

k

2
H2

)|H1

)
.

Note that, by Lemma VI.5, H2|H1 = 0. Therefore

h0
(
kK +

k

2
H2

) ≥ h0
(
kK +

k

2
H1 +

k

2
H2

)
+

k/2−1∑
j=0

h0
((
kK + (

k

2
− j)H1

)|H1

)
,

so

Ω1 ≤
k/2−1∑
j=0

h0
((
kK + (

k

2
− j)H1

)|H1

)
=

k/2−1∑
j=0

h0
(
kKH1 − (

k

2
+ j)H1|H1

)
.

(7)

By Lemma VI.6, KH1 and H1|H1 are both multiples of Σ1 + Φ1, and any
positive multiple of Σ1 + Ψ1 is ample. Suppose H1|H1 = a1(Σ1 + Ψ1) and
KH1 = b1(Σ1 +Ψ1). Then

−µ

6
= Σ1 ·H1 = aΣ1 · (Σ1 +Ψ1) = a1

and

µ

6
− ν = 2g(Σ1)− 2 = (KH1 + Σ1) · Σ1 = KH1 · Σ1 = b1



296 Abelian surfaces with odd bilevel structure

Hence, using equation (7)

Ω1 ≤
k/2−1∑
j=0

h0
(
(
kµ

6
− kν +

kµ

12
+

jµ

6
)(Σ1 +Ψ1)

)

=

k/2−1∑
j=0

h0
(
(
ktν

4
− kν +

jtν

6
)(Σ1 +Ψ1)

)
.

Since t ≥ 7 (we know from [14] that Abil∗
t is rational for t ≤ 5), we have

ktν
4
−kν+ jtν

6
− tν

6
+ ν > 0 for all j and hence (ktν

4
−kν+ jtν

6
)(Σ1+Ψ1)−KH1

is ample. So by vanishing we have

Ω1 ≤
k/2−1∑
j=0

1

2
(
ktν

4
− kν +

jtν

6
)2(Σ1 +Ψ1)

2 +O(k2)

=

k/2−1∑
j=0

(
ktν

4
− kν +

jtν

6
)2 +O(k2)

= ν2
(1
2
− 7t

24
+ t2
( 1
24

+
1

864

))
k3 +O(k2). �

Next we carry out the same calculation for H2.

Proposition VII.2 The obstruction from H2 is

Ω2 ≤ ν2
((1

2
+

1

72

)
t2 −
(1
4
+

1

24

)
t− 7

3
+

1

24

)
k3 +O(k2).

Proof By the same argument as above (equation (7)) the obstruction is

Ω2 ≤
k/2−1∑
j=0

h0
(
kKH2 − (

k

2
+ j)H2|H2

)
.

In this case H2|H2 = a2(Σ2 + Ψ2) + c2R, where R =
∑

α,β Rαβ is the sum of

all the exceptional curves of H2 → H2, and KH2 = b2(Σ2 +Ψ2) + d2R. Since
Σ2

∼= X(2t) we have by [18, 1.6.4]

2g(Σ2)− 2 =
1

3
(t− 3)ν(2t) = µ− ν

2
.

Hence

−µ = Σ2 ·H2 = a2Σ
2
2 + a2Σ2 ·Ψ2 + c2Σ2 ·R = 6a2;
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so a2 = −µ/6, and

−4ν2 = R ·H2 = a2Σ2 ·R + a2Ψ2 ·R + c2R
2 = −2ν2c2;

so c2 = 2. Therefore

H2|H2 = −µ

6
(Σ2 +Ψ2) + 2R.

Similarly

µ− ν

2
= (KH2 + Σ2) · Σ2 = 6b2

so b2 = µ/6− ν/12, and 0 = R.KH2 = d2R
2 so d2 = 0. Hence

KH2 =
1

6
(µ− ν

2
)(Σ2 +Ψ2).

Moreover Lj = (k − 1)KH2 − (k
2
+ j)H2|H2 is ample, as is easily checked

using the Nakai criterion and the fact that the cone of effective curves on
H2 is spanned by Rαβ and by the nonexceptional components of the fibres of
the two maps H2 → X(t). These components are Σα ≡ Σ2 −

∑
β Rαβ and

Ψβ ≡ Ψ2 −
∑

α Rαβ, and it is simple to check that L2
j , Lj · Σα = Lj ·Ψβ and

Lj ·Rαβ are all positive for the relevant values of j, k and t. Therefore

Ω2 ≤
k/2−1∑
j=0

1

2

(
kKH2 − (

k

2
+ j)H2|H2

)2

=

k/2−1∑
j=0

1

2

(
ν(

kt

4
− k

12
+

jt

6
)(Σ2 +Ψ2) + (k + 2j)R

)2
= ν2k3

(
t2(

3

8
+
1

8
+

1

72
)− t(

1

4
+

1

24
) +

1

24
− 2− 1

3

)
+O(k2),

since (Σ2 +Ψ2)
2 = 12. �

VIII Final calculation

In this section we assemble the results of the previous sections into a proof of
the main theorem.

Theorem VIII.1 Abil∗
t is of general type for t odd and t ≥ 17.
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Proof We put n = 3k in Theorem II.6, and use φ2(t) = 2ν and the fact
that

φ4(t) = t4
∏
p|t
(1− p−4) = t2φ2(t)

∏
p|t
(1 + p−2).

This gives the expression

dimS∗
n(Γ

bil
t ) =

k3ν2

320
t4
∏
p|t
(1 + p−2) +O(k2).

From Proposition VII.1 and Proposition VII.2 we have

Ω1 = k3ν2
( 37
864

t2 − 7

24
t+

1

2

)
+O(k2),

Ω2 = k3ν2
(37
72

t2 − 7

24
t− 55

24

)
+O(k2)

and from Corollary V.7 and Corollary IV.2

Ω∞ = k3ν2
∑
r|t

11

36r
t2
∏

p|(r,h)

(1− p−2) +O(k2).

since φ2(r)φ2(h) = t2
∏

p|(r,h)(1− p−2).

It follows that Abil∗
t is of general type, for odd t, provided

1

320

∏
p|t
(1 + p−2)t4 − 481

864
t2 +

7

12
t+

43

24
−
∑
r|t

11

36r
t2
∏

p|(r,h)

(1− p−2) > 0. (8)

This is simple to check: since either r = 1 or r ≥ 3, and since the sum of the
divisors of t is less than t/2, the last term can be replaced by −11

36
t2 − 11

108
t3

and the t and constant terms, and the p−2t4 term, can be discarded as they
are positive. The resulting expression is a quadratic in t whose larger root
is less than 40, so we need only consider odd t ≤ 39. We deal with primes,
products of two primes and prime powers separately. In the case of primes,
the expression on the left-hand side of the inequality (8) becomes 1

320
t4 −

7433
8640

t2 + 5
18
t + 43

24
, which is positive for t ≥ 17. The expression in the case of

t = pq is positive if t ≥ 21. For t = p2 we get an expression which is negative
for t = 9 but positive for t = 25, and for t = p3 the expression is positive. �

One can also say something for t even, though not if t is a power of 2.

Corollary VIII.2 Abil∗
t is of general type unless t = 2ab with b odd and

b < 17.
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Proof Abil
nt covers Abil

t for any n, and therefore Abil∗
nt is of general type if

Abil∗
t is of general type. �
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